- Применение правильных многогранников

Презентация "Применение правильных многогранников" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19

Презентацию на тему "Применение правильных многогранников" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайд(ов).

Слайды презентации

Выполнили: ученики 10 а класса Грачева Татьяна, Кудрявцев Павел, Семеренко Александр, Егорова Юлия, Самохвалова Юлия, Красненков Дмитрий. МОУ СОШ №42 Апрель 2011 год. Руководители проекта: Учитель математики Князева Е.Н., учитель информатики Жеревчук Н.А. Проект по математике «Мир правильных многогр
Слайд 1

Выполнили: ученики 10 а класса Грачева Татьяна, Кудрявцев Павел, Семеренко Александр, Егорова Юлия, Самохвалова Юлия, Красненков Дмитрий

МОУ СОШ №42 Апрель 2011 год

Руководители проекта: Учитель математики Князева Е.Н., учитель информатики Жеревчук Н.А.

Проект по математике «Мир правильных многогранников»

5klass.net

Цель проекта: познакомить учащихся с рядом интересных особенностей правильных многогранников, показать “мир в целом”, преодолев разобщенность научного знания по теме «Многогранники». систематизировать знаний об основных видах многогранников, показать их применение в других видах деятельности; развив
Слайд 2

Цель проекта: познакомить учащихся с рядом интересных особенностей правильных многогранников, показать “мир в целом”, преодолев разобщенность научного знания по теме «Многогранники».

систематизировать знаний об основных видах многогранников, показать их применение в других видах деятельности;

развивать аналитические умения учащихся, способности самостоятельного поиска информации;

развивать самостоятельность и творчество, расширять кругозор, способствовать проявлению личностных качеств и способностей, обогащению межличностных отношений.

Задачи проекта:

Проблемные вопросы с научной точки зрения. Практическое применение многогранников в окружающей среде. Группа «Историки». Группа «Практики». Группа «Теоретики-математики». Направления деятельности групп. Развитие теории многогранников с исторической точки зрения. Первые сведения о многоугольниках. Пл
Слайд 3

Проблемные вопросы с научной точки зрения

Практическое применение многогранников в окружающей среде

Группа «Историки»

Группа «Практики»

Группа «Теоретики-математики»

Направления деятельности групп

Развитие теории многогранников с исторической точки зрения

Первые сведения о многоугольниках. Платоновы тела и их свойства. Евклид. Архимед и его "тела". "Стереометрия". Иоганн Кеплер. Взаимосвязь «золотого сечения» и происхождения многогранников.

Эйлер. Теорема о Числе граней, вершин и ребер многогранника. Происхождение имен правильных многогранников. Золотая пропорция в додекаэдре и икосаэдре Золотая пропорция во внешней площади и объеме додекаэдра и икосаэдра Прикладное применение многоугольников. Конструирование Архимедового усеченного икосаэдра из Платонового икосаэдра

1. Многогранники в архитектуре и искусстве 2. Геометрия кисти Леонардо. 3. Многогранники Дюрера. 4. Многогранники на картинах Сальвадора Дали. 5. Мир М.К Эшера. 6. Новый правильный многогранник Матюшка Тейи Крашек. 7. Многогранники в мире химии, биологии. 8. Использование многогранников в жизни.

С древнейших времен наши представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей. Правильным многогранником называется многогранник, у которого все грани правильные равны
Слайд 4

С древнейших времен наши представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей.

Правильным многогранником называется многогранник, у которого все грани правильные равные многоугольники, и все двугранные углы равны.

«Теория многогранников, в частности выпуклых многогранников, — одна из самых увлекательных глав геометрии» ( русский математик Л.А. Люстернак).

Введение

“Правильных многогранников так мало, но это весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”. ( Л. Кэрролл).

Платон (427 до н. э.—347 до н. э.) древнегреческий философ. Архимед (287 г. до н.э. – 212 г. до н.э). История возникновения правильных многогранников. Правильные многогранники известны с древнейших времён. Мы рассмотрим как правильные многогранники связаны с именами Платона, Евклида, Архимеда и Иога
Слайд 5

Платон (427 до н. э.—347 до н. э.) древнегреческий философ

Архимед (287 г. до н.э. – 212 г. до н.э)

История возникновения правильных многогранников

Правильные многогранники известны с древнейших времён. Мы рассмотрим как правильные многогранники связаны с именами Платона, Евклида, Архимеда и Иоганна Кеплера.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». О которых он писал в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставля
Слайд 6

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». О которых он писал в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух — октаэдру, вода — икосаэдру, а огонь — тетраэдру.

Платон

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ре
Слайд 7

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников.

Евклид

Известно еще множество совершенных тел, получивших название полуправильных многогранников или Архимедовых тел. Множество Архимедовых тел можно разбить на несколько групп. Первую из них, составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Для Платоновых тел
Слайд 8

Известно еще множество совершенных тел, получивших название полуправильных многогранников или Архимедовых тел. Множество Архимедовых тел можно разбить на несколько групп. Первую из них, составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками.

Архимед

Архимедовы тела: усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр.

Все та же вера в гармонию, красоту и математически закономерное устройство мироздания привела И. Кеплера к мысли о том, что поскольку существует пять правильных многогранников, то им соответствуют только шесть планет. По его мнению, сферы планет связаны между собой вписанными в них Платоновыми телам
Слайд 9

Все та же вера в гармонию, красоту и математически закономерное устройство мироздания привела И. Кеплера к мысли о том, что поскольку существует пять правильных многогранников, то им соответствуют только шесть планет. По его мнению, сферы планет связаны между собой вписанными в них Платоновыми телами. Поскольку для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором будет находиться Солнце.

Кеплер

В сферу орбиты Сатурна он вписывает куб, в куб - сферу Юпитера, в сферу Юпитера - тетраэдр, и так далее последовательно вписываются друг в друга сфера Марса - додекаэдр, сфера Земли - икосаэдр, сфера Венеры - октаэдр, сфера Меркурия

Геометрическая модель Солнечной системы, основанная на «платоновых телах».

Открытие правильных звёздчатых многогранников -тел Кеплера-Пуансо.

Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками.

Леонардо да Винчи в «Золотом деление" искал гармонические отношения в живописи, архитектуре, строении человеческого тела. Золотое сечение применяется для построения правильных пяти- и десятиугольников; в стереометрии - правильных двенадцатигранников (додекаэдров) и двадцатигранников (икосаэдров
Слайд 10

Леонардо да Винчи в «Золотом деление" искал гармонические отношения в живописи, архитектуре, строении человеческого тела. Золотое сечение применяется для построения правильных пяти- и десятиугольников; в стереометрии - правильных двенадцатигранников (додекаэдров) и двадцатигранников (икосаэдров).

Взаимосвязь «золотого сечения» и происхождения многогранников

Многомудрые греки сочли разумным возвести генезис пропорций к самим истокам вселенной: "По Ферекиду, Зевс связал определенными пропорциями то, что прежде было хаотично".

Существует 5 правильных многогранников: правильный тетраэдр; куб или правильный гексаэдр; правильный октаэдр; правильный додекаэдр; правильный икосаэдр. Многогранник называется правильным, если он выпуклый, все его грани равны друг другу и в вершине находится одинаковое количество ребер. Многогранни
Слайд 11

Существует 5 правильных многогранников: правильный тетраэдр; куб или правильный гексаэдр; правильный октаэдр; правильный додекаэдр; правильный икосаэдр

Многогранник называется правильным, если он выпуклый, все его грани равны друг другу и в вершине находится одинаковое количество ребер.

Многогранники в математике

Подтвердить это можно с помощью развертки выпуклого многогранного угла. Для того чтобы получить какой-нибудь правильный многогранник, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360о, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к

Почему именно пять?

Для любого выпуклого многогранника справедливо соотношение: Г+В-Р=2, где Г-число граней, В-число вершин, Р- число ребер данного многогранника. Грани + Вершины - Рёбра = 2. Это связано с числом их граней: тетраэдр имеет 4 грани, в переводе с греческого "тетра" - четыре, гексаэдр (куб) имеет
Слайд 12

Для любого выпуклого многогранника справедливо соотношение: Г+В-Р=2, где Г-число граней, В-число вершин, Р- число ребер данного многогранника. Грани + Вершины - Рёбра = 2.

Это связано с числом их граней: тетраэдр имеет 4 грани, в переводе с греческого "тетра" - четыре, гексаэдр (куб) имеет 6 граней, в переводе с греческого "эдрон" - грань,"гекса" - шесть; октаэдр - восьмигранник, в переводе с греческого "окто" - восемь; додекаэдр - двенадцатигранник, в переводе с греческого "додека" двенадцать; икосаэдр имеет 20 граней, в переводе с греческого "икоси" - двадцать.

Теорема Эйлера

Почему правильные многогранники получили такие названия?

Додекаэдр и двойственный ему икосаэдр занимают особое место среди Платоновых тел. Еще одно соотношение для додекаэдра и икосаэдра, подтверждающее связь с золотой пропорцией. Золотая пропорция в додекаэдре и икосаэдре. Золотая пропорция во внешней площади и объеме додекаэдра и икосаэдра. Действительн
Слайд 13

Додекаэдр и двойственный ему икосаэдр занимают особое место среди Платоновых тел.

Еще одно соотношение для додекаэдра и икосаэдра, подтверждающее связь с золотой пропорцией.

Золотая пропорция в додекаэдре и икосаэдре

Золотая пропорция во внешней площади и объеме додекаэдра и икосаэдра

Действительно, гранями додекаэдра являются пентагоны, т.е. правильные пятиугольники, основанные на золотой пропорции.

Если внимательно посмотреть на икосаэдр, то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон.

Если взять икосаэдр и додекаэдр с длиной ребра, равной единице, и вычислить их внешнюю площадь и объем, то они выражаются через золотую пропорцию.

Многогранники в архитектуре. Музеи Плодов в Яманаши создан с помощью трехмерного моделирования. Пирамиды стоят на древнем кладбище в Гизе, на противоположном от Каира, столицы современного Египта, берегу реки Нил. Некоторые археологи считают, что, возможно, на строительство Великой пирамиды 100 000
Слайд 14

Многогранники в архитектуре

Музеи Плодов в Яманаши создан с помощью трехмерного моделирования.

Пирамиды стоят на древнем кладбище в Гизе, на противоположном от Каира, столицы современного Египта, берегу реки Нил. Некоторые археологи считают, что, возможно, на строительство Великой пирамиды 100 000 человек потребовалось 20 лет. Она была создана из более чем 2 миллионов каменных блоков, каждый из которых весил не менее 2,5 тонн.

В III веке до н.э. был построен александрийский маяк, где использовались формы правильных многогранников. Маяк был построен на маленьком острове Фарос в Средиземном море, около берегов Александрии. На его строительство ушло 20 лет, а завершен он был около 280 г. до н.э., во времена правления Птолемея II, царя Египта

Четырехъярусная Спасская башня с церковью Спаса Нерукотворного — главный въезд в Казанский кремль. Возведена в XVI веке псковскими зодчими Иваном Ширяем и Постником Яковлевым по прозванию «Барма». Четыре яруса башни представляют из себя куб, многогранники и пирамиду.

Спасская башня Кремля.

Александрийский маяк

Пирамиды Музеи Плодов

Мауриц Корнилис Эшер – «Порядок и хаос», гравюра «Звезды», литография «Водопад». Многогранники в искусстве. Леонардо да Винчи - «Портрет Монны Лизы». Композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Альбрехт Дюрер - гравюра «Меланхолия».
Слайд 15

Мауриц Корнилис Эшер – «Порядок и хаос», гравюра «Звезды», литография «Водопад»

Многогранники в искусстве

Леонардо да Винчи - «Портрет Монны Лизы». Композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника.

Альбрехт Дюрер - гравюра «Меланхолия». На переднем плане картины изображен додекаэдр.

Сальвадор Дали – «Тайная Вечеря». Христос со своими учениками изображён на фоне огромного прозрачного додекаэдр.

Сурьменистый сернокислый натрий - тетраэдра. Многогранники в природе, химии и биологии. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Кристалл пирита— природная модель додекаэдра. Кристаллы поваренной соли передают форму куб. Монокристалл алюминиево-калиевых квасцов
Слайд 16

Сурьменистый сернокислый натрий - тетраэдра

Многогранники в природе, химии и биологии

Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников.

Кристалл пирита— природная модель додекаэдра.

Кристаллы поваренной соли передают форму куб

Монокристалл алюминиево-калиевых квасцов имеет форму октаэдра.

Хрусталь (призма)

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра!

Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

В молекуле метана имеет форму правильного тетраэдра.

Да, мы живем и работаем в параллелепипеде. Корпус физического факультета КГУ Параллелепипед, поставленный вертикально на другой параллелепипед. С многогранниками мы постоянно встречаемся в нашей жизни – это древние Египетские пирамиды и кубики, которыми играют дети; объекты архитектуры и дизайна, пр
Слайд 17

Да, мы живем и работаем в параллелепипеде. Корпус физического факультета КГУ Параллелепипед, поставленный вертикально на другой параллелепипед.

С многогранниками мы постоянно встречаемся в нашей жизни – это древние Египетские пирамиды и кубики, которыми играют дети; объекты архитектуры и дизайна, природные кристаллы; вирусы, которые можно рассмотреть только в электронный микроскоп, прочные конструкции – шестиугольные соты, которые пчелы строили задолго до появления человека, книжные полки, вазы, письменный стол, шкатулки, коробочки, аквариумы, часы.

Использование в жизни

Оригами Интерьер дома Письменный стол шкатулки

Заключение. При работе над проектом «Мир правильных многогранников» мы прикоснулись к удивительному миру красоты, совершенства, гармонии, узнали имена учёных, художников, которые посвятили этому миру свои труды, являющиеся шедеврами науки и искусства. Ещё раз убедились, что истоки математики – в при
Слайд 18

Заключение

При работе над проектом «Мир правильных многогранников» мы прикоснулись к удивительному миру красоты, совершенства, гармонии, узнали имена учёных, художников, которые посвятили этому миру свои труды, являющиеся шедеврами науки и искусства. Ещё раз убедились, что истоки математики – в природе, окружающей нас.

исторические факты происхождения правильных многоугольников, математические законы и использование их в различных сферах деятельности

что идеи Евклида, Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира уже в наше время нашли свое продолжение в интересной научной гипотезе, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов.

Мы и Они считают

Ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Их 62 вершины и середины ребер обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.

В трехмерном пространстве деления сферы ведут к созданию пяти правильных многогранников, так называемых пяти тел Платона. Формы Платона связаны с человеческим телом и природой сознания, раскрытие которой ведет не только к пониманию интеллекта Вселенной, но и к эмпирическому восприятию Бога, даруя ощущение глубокой всеобщей взаимосвязи элементов бытия.

Рассмотрели Выяснили,

"Математика - Энциклопедия для детей" М.: Аванта +, 1998 Ковалев Ф.В. Золотое сечение в живописи. К.: Высшая школа, 1989. Стахов А. Коды золотой пропорции. Смирнова И.М. В мире многогранников. - М.: Просвещение, 1995 Журнал «Наука и техника» Журнал «Квант», 1973, № 8. Журнал «Математика в
Слайд 19

"Математика - Энциклопедия для детей" М.: Аванта +, 1998 Ковалев Ф.В. Золотое сечение в живописи. К.: Высшая школа, 1989. Стахов А. Коды золотой пропорции. Смирнова И.М. В мире многогранников. - М.: Просвещение, 1995 Журнал «Наука и техника» Журнал «Квант», 1973, № 8. Журнал «Математика в школе», 1994, № 2; № 3. http://ru.wikipedia.org http://festival.1 september.ru http://images.yandex.ru http://pedsovet.su http://museum.ru

Литература и электронные источники

Список похожих презентаций

Мир правильных многогранников

Мир правильных многогранников

Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, ...
Элементы правильных многогранников

Элементы правильных многогранников

Содержание:. Цель пректа Термин Многогранники История Платон Платоновы тела Евклид Архимед Архимедовы тела Иоганн Кеплер Космологическая гипотеза ...
Классификация и свойства правильных многогранников

Классификация и свойства правильных многогранников

Свойства многогранников Многогранники представляют собой простейшие тела в пространстве. Многогранные формы мы видим ежедневно: спичичный коробок, ...
Виды правильных многогранников

Виды правильных многогранников

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Применение свойств действий с рациональными числами

Применение свойств действий с рациональными числами

С каким настроением я начинаю урок? хорошее среднее плохое. Рациональные числа. Числа, которые можно представить в виде отношения - натуральное число, ...
Применение распределительного свойства умножения

Применение распределительного свойства умножения

Цели урока:. Закрепить навыки применения распределительного свойства умножения для упрощения выражений и устного счета. Проверка выполнения домашнего ...
Применение производной к исследованию функций

Применение производной к исследованию функций

Цель урока – закрепить и систематизировать знания учащихся по исследованию функций с помощью производной. Применение производной к исследованию функции. ...
Применение производной к исследованию и построению графиков функций

Применение производной к исследованию и построению графиков функций

Цель урока:. научиться применять таблицу производных при исследовании функций и построении графиков. Математический диктант. Вариант 1. (Cu)’=… …=(u’v-v’u)/v² ...
Применение производной в различных областях науки

Применение производной в различных областях науки

Первый корпус БелГУ. с. Ливенка 2012год. Урок – деловая игра по теме: «Применение производной в различных областях науки». Корнева Г.Н., учитель математики, ...
Применение производной

Применение производной

Дифференциальное исчисление создано Ньютоном и Лейбницем сравнительно недавно, в конце 17 столетия. Тем более поразительно, что за долго до этого ...
Виды многогранников

Виды многогранников

Многогранником называется тело, ограниченное конечным числом плоскостей. Поверхность многогранника состоит из конечного числа многоугольников, которые ...
Применение Формулы Пика

Применение Формулы Пика

Георг Пик. Формула Пика была открыта австрийским математиком Георгом Пиком в 1899г. Краткая Биография. Георг Алекса́ндр Пик (10 августа 1859 — 13 ...
Применение свойств функций к решению уравнений и неравенств

Применение свойств функций к решению уравнений и неравенств

Содержание. Метод мажорант (метод оценки) Использование свойств функций: Область определения Множество значений Четность и нечетность 3. Задачи с ...
Логарифмы. Применение логарифмов

Логарифмы. Применение логарифмов

повторить определение логарифма; закрепить основные свойства логарифмов; - способствовать формированию умения применять свойства логарифмов при упрощении ...
Каскады многогранников

Каскады многогранников

Куб и тетраэдр. Тетраэдр можно вписать в куб так, что вершинами тетраэдра будут некоторые вершины куба. Упражнение 1. Найдите ребро тетраэдра, вписанного ...
Вклад философов-математиков в развитие теории многогранников

Вклад философов-математиков в развитие теории многогранников

Математика: лабиринты открытий. Стереометрия как наука известна уже очень давно. Изысканиями в этой области занимались многие видные умы древности. ...
Виды многогранников

Виды многогранников

Геометрия является самым могущественным средством для изощрения наших умственных способностей. Г.Галилей. Многогранником называется тело, ограниченное ...
Применение теоремы Пифагора и пифагоровых троек для решения геометрических задач

Применение теоремы Пифагора и пифагоровых троек для решения геометрических задач

Объект исследования: Теорема Пифагора и пифагоровы тройки. Предмет исследования: Применение пифагоровых троек для быстрого решения геометрических ...
Модели многогранников

Модели многогранников

Правильным многогранником называется многогранник, у которого все грани правильные равные многоугольники, и все двугранные углы равны. Существует ...
Сечение многогранников

Сечение многогранников

Определения:. Секущая плоскость - плоскость, по обе стороны от которой имеются точки данного многогранника. Многоугольник – сторонами которого являются ...

Конспекты

Применение формул сокращенного умножения

Применение формул сокращенного умножения

Конспект урока алгебры в 8 классе. Тема. : «Применение формул сокращенного умножения». . Тип урока:. урок обобщения и систематизации знаний. ...
Применение свойств арифметического квадратного корня

Применение свойств арифметического квадратного корня

Урок математики по теме: "Применение свойств арифметического квадратного корня" (8-й класс). . Аксютченко. . Жанна Владимировна,. учитель математики. ...
Применение свойств рациональных чисел для рационализации вычислений

Применение свойств рациональных чисел для рационализации вычислений

Тема: Применение свойств рациональных чисел для рационализации вычислений. Тип урока:. Формирование умений и навыков. Цели урока:. Обучающие:. ...
Применение различных способов разложения на множители

Применение различных способов разложения на множители

Логинова Марина Николаевна. учитель математики. МКОУ Василёвская основная общеобразовательная школа. . Гусь-Хрустального района. ...
Применение распределительного свойства умножения

Применение распределительного свойства умножения

Урок разработала:.   Газеева Галина Вениаминовна. Класс:.  6. Предмет:.  математика. Место проведения. :  кабинет математики. Учебник: . «Математика, ...
Применение производной к исследованию функции

Применение производной к исследованию функции

МОУ Греково-Степановская СОШ. . Чертковского района Ростовской области. Учитель математики и информатики. Киселева Лариса Анатольевна. Урок алгебры ...
Применение производной к исследованию функций. Наибольшее и наименьшее значение функции

Применение производной к исследованию функций. Наибольшее и наименьшее значение функции

ГОУ «Школа здоровья и индивидуального развития». Красногвардейского района. Санкт-Петербурга. Урок алгебры и начал анализа. ...
Построение сечений многогранников

Построение сечений многогранников

Государственное бюджетное образовательное учреждение. Лицей №281. «Построение сечений многогранников». Урок геометрии. 10 класс. ...
Построение сечений многогранников на основе аксиоматики

Построение сечений многогранников на основе аксиоматики

Чудаева Елена Владимировна, учитель математики,. МОУ «Инсарская средняя общеобразовательная школа №1»,. г. Инсар, Республика Мордовия. . Автор. ...
Построение правильных многоугольников

Построение правильных многоугольников

Открытый урок по геометрии в 9 классе(в рамках ФГОС). Учитель 1 кв. категории - Савченко Мария Анатольевна. МАОУ «Молчановская СОШ № 2» Молчановского ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:29 октября 2018
Категория:Математика
Содержит:19 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации