- Применение производной к исследованию функции

Конспект урока «Применение производной к исследованию функции» по алгебре

МОУ Греково-Степановская СОШ

Чертковского района Ростовской области

Учитель математики и информатики

Киселева Лариса Анатольевна

Урок алгебры в 11 классе


Урок – смотр знаний

Тема урока

Применение производной к исследованию функции


Цели урока:

Дидактическая:

обеспечить проверку теоретических знаний и умений по теме «Применение производной к исследованию функции».

Развивающая:

развитие умений применять знания в конкретной ситуации; развитие логического мышления; умений сравнивать, обобщать, правильно излагать мысли; развитие самостоятельной деятельности учащихся.

Воспитательная:

воспитание интереса и любви к предмету через содержание учебного материала, умения работать в коллективе, взаимопомощи, культуры общения; воспитание таких качеств характера, как настойчивость в достижении цели; умение не растеряться в проблемных ситуациях.


План проведения урока:


  1. Организационный момент.

  2. Актуализация знаний учащихся.

  3. Работа в группах по карточкам.

  4. Историческая справка.

  5. Домашнее задание.

  6. Итог урока.

Ход урока


  1. Организационный момент.

  • Приветствие.

  • Сообщение цели урока.

  • Объявление плана урока.


  1. Актуализация знаний учащихся.


  1. Учащиеся поднимают руку, если согласны с утверждением, и не поднимают – если не согласны.

  • В точке возрастания функции её производная больше нуля. (Верно).

  • Если производная функции в некоторой точке равна нулю, то в этой точке имеется экстремум! (Неверно).

  • Производная произведения равна произведению производных. (Неверно).

  • Наибольшее и наименьшее значения функции на некотором отрезке наблюдаются или в стационарных точках, или на концах отрезка. (Верно).

  • Любая точка экстремума является критической точкой. (Верно).


  1. На экране по очереди появляются слайды с чертежами и заданиями к ним. Учащиеся фиксируют в тетрадях ответ. Затем на экран выводятся правильные ответы. Самопроверка.


1 слайд

1 задание: Функция y = f(x) определена на промежутке (- 6; 6). На рисунке изображён график её производной. Найдите точки, в которых производная функции равна нулю.

2 слайд

2 задание: Функция y = f(x) определена на промежутке (-6; 5). На рисунке изображён график её производной. Укажите количество промежутков, на которых функция возрастает.

3 слайд

3 задание: Функция y = f(x) определена на промежутке (-4; 5). На рисунке изображён график её производной. Найдите точку минимума функции y = f(x).



4 слайд

4 задание: Функция y = f(x) определена на промежутке (-4; 5). На рисунке изображён график её производной. Найдите точку максимума функции y = f(x).








5 слайд

5 задание: Функция y = f(x) определена на промежутке (-5; 5). На рисунке изображён график её производной. Укажите точку, в которой функция принимает наименьшее значение.



6 слайд

Ответы: 1 задание: х = - 4; х = - 2; х = 1; х = 5

2 задание: 5

3 задание: х = 3

4 задание: х = 2

5 задание: х = - 4


  1. Работа в группах по карточкам.


Учащиеся делятся на 3 группы. Каждая группа получает карточку. Через некоторое время каждая группа по очереди отвечает у доски.


Карточка № 1.


  1. Расскажите достаточные признаки возрастания и убывания функции.

  2. Исследуйте функцию и постройте её график f(x) = 1/3х3 – 3х

  3. Найдите наибольшее и наименьшее значения функции f(x) = - x3 + 2x2 -8х + 1 на отрезке [- 2; 1].


Карточка № 2.


  1. Расскажите о применении производной к нахождению критических точек, её максимумов и минимумов.

  2. Найдите наибольшее и наименьшее значения функции f(x) = 1/3x3 – 9х + 10 на отрезке [0; 6].

  3. Исследуйте функцию и постройте её график f(x) = x4 – 8x2.

Карточка № 3.


  1. Расскажите план нахождения наибольшего и наименьшего значения функции на отрезке.

  2. Найдите промежутки возрастания и убывания функции

f(x) = 0,2х5 – х3 – 4х + 1

  1. Исследуйте функцию и постройте её график f(x) = 6х – 2х3 + 1


  1. Историческая справка.


Производная - одно из фундаментальных понятий математики. Оно возникло в XXVII веке в связи с необходимостью решения ряда задач из физики, механики и математики, но в первую очередь следующих двух: определение скорости прямолинейного движения и построения касательной к прямой. Независимо друг от друга И. Ньютон и Г. Лейбниц разработали аппарат, которым мы и пользуемся в настоящее время. И. Ньютон в основном опирался на физическое представление о мгновенной скорости движения, считая его очевидным и сводя к нему другие случаи производной, а Г. Лейбниц использовал понятие бесконечно малой. Исчисление созданное Ньютоном и Лейбницем, получило название дифференциального исчисления. С его помощью был решен целый ряд задач теоретической механики, физики и астрономии. В частности, используя методы дифференциального исчисления, ученые предсказали возвращение кометы Галлея, что было большим триумфом науки XVIII в. С помощью тех же методов математики изучали в XVII и XVIII вв. различные кривые, нашли кривую, по которой быстрее всего падает дифференциального исчисления сыграл Л. Эйлер, написавший учебник «Дифференциальное исчисление».

Основные понятия дифференциального исчисления долгое время не были должным образом обоснованы. Однако в начале XIX в. французский математик О. Коши дал строгое построение дифференциального исчисления на основе понятия предела.

Применяемая сейчас система обозначений для производной восходит к Лейбницу и Лагранжу.

В настоящее время понятие производной находит большое применение в различных областях науки и техники.


  1. Домашнее задание: (дифференцировано по уровню сложности).

  1. «Проверь себя!»

  2. 968; № 970 (1); № 973


  1. Итог урока.







ИСТОЧНИКИ МАТЕРИАЛОВ



  1. Глейзер Г.И. История математики в школе. IXX кл.  М.: Просвещение, 1983.

  2. Григорьева Г.И. Алгебра: 11 класс: Ч. 1, 2: Поурочные планы по учебнику Ш.А.Алимова, Ю.М.Колягина, Ю.В.Сидорова. М.: Просвящение. 2002

  3. ЕГЭ -2011. Математика. Типовые экзаменационные варианты: 30 вариантов. Под ред. Семенова А.Л., Ященко И.В. М.: Национальное образование, 2010

  4. Максимовская М. А. Тесты по математике 5 – 11 классы. М: Олимп. 2003

  5. Математика. Подготовка к ЕГЭ- 2011.  Под ред. Лысенко Ф.Ф., Кулабухова С.Ю. Ростов-на-Дону: Легион-М, 2010

  6. Ткачева М.В. Федорова Н.Е. Шабунин М.И. Алгебра и начала анализа: Дидактические материалы для 10-11 классов. М.: Мнемозина. 2001

  7. http://www.neuch.ru/referat/41434.html

  8. http://studyport.ru/tochnyie-nauki/ekstremumyi-funktsiy




Здесь представлен конспект к уроку на тему «Применение производной к исследованию функции», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Применение производной к исследованию функции

Применение производной к исследованию функции

Урок 49. Тема урока:. «Применение производной к исследованию функции». Предмет:. Алгебра и начала анализа. Тип занятия:. закрепления изученного ...
Применение производной к исследованию функции

Применение производной к исследованию функции

Обобщающий урок в 11 классе по теме. «Применение производной к исследованию функции». Цель урока:. Систематизирование и обобщение знаний ...
Применение производной к исследованию свойств функции и к решению прикладных задач

Применение производной к исследованию свойств функции и к решению прикладных задач

Конспект урока алгебры для учащихся 10 класса. Тема урока:. Применение производной к исследованию свойств функции и к решению прикладных задач. ...
Применение производной к исследованию функций. Наибольшее и наименьшее значение функции

Применение производной к исследованию функций. Наибольшее и наименьшее значение функции

ГОУ «Школа здоровья и индивидуального развития». Красногвардейского района. Санкт-Петербурга. Урок алгебры и начал анализа. ...
Геометрический смысл производной. Применение производной к исследованию функций

Геометрический смысл производной. Применение производной к исследованию функций

Урок- консультация по теме «Геометрический смысл производной. Применение производной к исследованию функций». Цель урока. :. содействовать созданию ...
Геометрический и физический смысл производной. Применение производной

Геометрический и физический смысл производной. Применение производной

Учитель математики. КГУ «Экономический лицей». Воробьева. Ирина. Юрьевна. Методическая разработка. урока математики в 10 классе. « Геометрический ...
Применение производной

Применение производной

Урок разноуровневого обобщающего повторения по теме:. «Применение производной». Урок разработан для учащихся 11 класса. Перед началом урока учащиеся ...
Web -разработка. Применение производной.10 класс

Web -разработка. Применение производной.10 класс

ТЕХНОЛОГИЧЕСКАЯ КАРТА КОНСТРУИРОВАНИЯ УРОКА С ИСПОЛЬЗОВАНИЕ СРЕДСТВ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ. Учитель Беломестнова Наталья Петровна. Предмет, ...
Применение производной для решения задач

Применение производной для решения задач

5. . Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 8». Рузаевского района Республики Мордовия. ...
Применение производной для решения задач экономического содержания

Применение производной для решения задач экономического содержания

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа № 31. города Мурманска. конспект урока. «Применение ...
Применение производной в физике и технике

Применение производной в физике и технике

Михеева Людмила Николаевна. МБОУ СОШ п. Бытошь. Учитель математики и информатики. Интегрированный урок математики в 10 классе. Тема урока. : Применение ...
Применение производной для исследования функций на монотонность и экстремумы

Применение производной для исследования функций на монотонность и экстремумы

Урок алгебры в 10 классе. по теме: «Применение производной для исследования функций. . на монотонность и экстремумы». Тип урока:. . интегрированный. ...
Исследование функции с помощью производной

Исследование функции с помощью производной

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №151 Красногвардейского района Санкт-Петербурга. 195426, ...
Применение производной

Применение производной

МБОУ «СОШ №2» г.Абакана. . Учитель математики: Герасимова Ирина Андреевна. . Интегрированный урок по теме «Применение производной». . Девиз ...
Производные функций и применение производной

Производные функций и применение производной

Государственное бюджетное общеобразовательное учреждение. . средняя общеобразовательная школа с. Чёрный Ключ. . муниципального района Клявлинский ...
Применение производной к построению графиков функций

Применение производной к построению графиков функций

Применение производной к построению графиков функций. Алгебра и начала анализа 11 класс. Автор: Димакова Ольга Николаевна – учитель математики ...
Применение параллельного переноса при построении квадратичной функции

Применение параллельного переноса при построении квадратичной функции

Урок по теме. : «Применение параллельного переноса при построении квадратичной функции». Тип урок. а: урок повторения. Цель урока:. Повторить ...
Исследование функции с помощью производной

Исследование функции с помощью производной

Выездное заседание республиканского клуба «Пеликан». 20 марта 2012 г. План-конспект урока. Тема «Исследование функции с помощью производной». ...
Понятие о производной функции. Ее геометрический и физический смысл

Понятие о производной функции. Ее геометрический и физический смысл

Дата. . Класс. . Предмет. . . 14.11.2013. . . 11. . Алгебра и начала анализа. . . . Тема урока:. Понятие о производной ...
Наибольшее и наименьшее значения функции

Наибольшее и наименьшее значения функции

Тема. :. Решение задач по теме « Наибольшее и наименьшее значения функции». Тип урока. : урок –практикум. Цель урока: готовить учащихся к самостоятельной ...