- Простейшие преобразования графиков функций

Презентация "Простейшие преобразования графиков функций" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Простейшие преобразования графиков функций" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

Простейшие преобразования графиков функций
Слайд 1

Простейшие преобразования графиков функций

Зная вид графика некоторой функции, можно при помощи геометрических преобразований построить график более сложной функции. Рассмотрим график функции y=x2 и выясним,как можно построить, используя сдвиги вдоль координатных осей, графики функций вида y=(x-m)2 и y=x2+n.
Слайд 2

Зная вид графика некоторой функции, можно при помощи геометрических преобразований построить график более сложной функции. Рассмотрим график функции y=x2 и выясним,как можно построить, используя сдвиги вдоль координатных осей, графики функций вида y=(x-m)2 и y=x2+n.

Пример 1. Построим график функции y=(x - 2)2, опираясь на график функции y=x2 (щелчок мышкой). График функции y=x2 есть некоторое множество точек координатной плоскости, координаты которых обращают уравнение y=x2 в верное числовое равенство. Обозначим это множество точек, то есть график функции y=x2
Слайд 3

Пример 1. Построим график функции y=(x - 2)2, опираясь на график функции y=x2 (щелчок мышкой). График функции y=x2 есть некоторое множество точек координатной плоскости, координаты которых обращают уравнение y=x2 в верное числовое равенство. Обозначим это множество точек, то есть график функции y=x2, буквой F, а неизвестный нам пока график функции y=(x - 2)2 обозначим буквой G. Сравним координаты тех точек графиков F и G, у которых одинаковые ординаты. Для этого составим таблицу:

Рассматривая таблицу (которую можно неограниченно продолжать и вправо и влево), замечаем, что одинаковые ординаты имеют точки вида (х0; у0) графика F и (х0 + 2; у0) графика G, где х0, у0 – некоторые вполне определенные числа.

На основании этого наблюдения можем сделать вывод, что график функции y=(x - 2)2 можно получить из графика функции y=x2 путем сдвига всех его точек вправо на 2 единицы (щелчок мышкой).

Таким образом, график функции y=(x - 2)2 может быть получен из графика функции y=x2 сдвигом вправо на 2 единицы. Рассуждая аналогично, можно доказать, что график функции y=(x + 3)2 также может быть получен из графика функции y=x2, но сдвигом не вправо, а влево на 3 единицы. Хорошо видно, что осями с
Слайд 4

Таким образом, график функции y=(x - 2)2 может быть получен из графика функции y=x2 сдвигом вправо на 2 единицы. Рассуждая аналогично, можно доказать, что график функции y=(x + 3)2 также может быть получен из графика функции y=x2, но сдвигом не вправо, а влево на 3 единицы.

Хорошо видно, что осями симметрии графиков функций y=(x - 2)2 и y=(x - 3)2 являются соответственно прямые х = 2 и х = - 3.

Чтобы увидеть графики, щелкни мышкой

Если вместо графика y=(x - 2)2 или y=(x + 3)2 рассмотреть график функции y=(x - m)2, где m – произвольное число, то в проведенном ранее рассуждении ничего принципиально не изменится. Таким образом, из графика функции у = х2 можно получить график функции y=(x - m)2 с помощью сдвига вправо на m единиц
Слайд 5

Если вместо графика y=(x - 2)2 или y=(x + 3)2 рассмотреть график функции y=(x - m)2, где m – произвольное число, то в проведенном ранее рассуждении ничего принципиально не изменится. Таким образом, из графика функции у = х2 можно получить график функции y=(x - m)2 с помощью сдвига вправо на m единиц в направлении оси Ох, если m > 0, или влево, если m 0, или влево, если m

Пример 2. Построим график функции y = x2 + 1, опираясь на график функции y=x2 (щелчок мышкой). Сравним координаты точек этих графиков, у которых одинаковые абсциссы. Для этого составим таблицу: Рассматривая таблицу, замечаем, что одинаковые абсциссы имеют точки вида (х0; у0) для графика функции y=x2
Слайд 6

Пример 2. Построим график функции y = x2 + 1, опираясь на график функции y=x2 (щелчок мышкой). Сравним координаты точек этих графиков, у которых одинаковые абсциссы. Для этого составим таблицу:

Рассматривая таблицу, замечаем, что одинаковые абсциссы имеют точки вида (х0; у0) для графика функции y=x2 и (х0; у0 + 1) для графика функции y = x2 + 1. На основании этого наблюдения можем сделать вывод, что график функции y=x2 + 1 можно получить из графика функции y=x2 путем сдвига всех его точек вверх (вдоль оси Оу) на 1 единицу (щелчок мышкой).

Итак, зная график функции y=x2, можно построить график функции y=x2 + п с помощью сдвига первого графика вверх на п единиц, если п>0, или вниз на | п | единиц, если п. Страница отображается по щелчку. Вывод: график функции y=f(x - m) + п может быть получен из графика функции y=f(x) с помощью посл
Слайд 7

Итак, зная график функции y=x2, можно построить график функции y=x2 + п с помощью сдвига первого графика вверх на п единиц, если п>0, или вниз на | п | единиц, если п

Страница отображается по щелчку

Вывод: график функции y=f(x - m) + п может быть получен из графика функции y=f(x) с помощью последовательно выполненных двух параллельных переносов: сдвига вдоль оси Ох на m единиц и сдвига графика y=f(x - m) вдоль оси Оу на п единиц.

Обобщение: график функции y=f(x) + п можно получить из графика функции y=f(x) путем сдвига графика функции y=f(x) вверх на п единиц в направлении оси Оу, если п > 0, или вниз, если п

Из выше сказанного следует, что графиком функции y=(x - m)2 + п является парабола с вершиной в точке (m; п). Ее можно получить из параболы y=x2 с помощью двух последовательных сдвигов. Пример 3. Докажем, что графиком функции у = х2 + 6х + 8 является парабола, и построим график. Решение. Представим т
Слайд 8

Из выше сказанного следует, что графиком функции y=(x - m)2 + п является парабола с вершиной в точке (m; п). Ее можно получить из параболы y=x2 с помощью двух последовательных сдвигов.

Пример 3. Докажем, что графиком функции у = х2 + 6х + 8 является парабола, и построим график. Решение. Представим трехчлен х2 + 6х + 8 в виде (x - m)2 + п. Имеем х2 + 6х + 8 = х2 + 2х*3 + 32 – 1 = (x + 3)2 – 1. Отсюда у = (x + 3)2 – 1. Значит, графиком функции у = х2 + 6х + 8 является парабола с вершиной в точке (- 3; - 1). Учитывая, что ось симметрии параболы – прямая х = - 3, при составлении таблицы значения аргумента функции следует брать симметрично относительно прямой х = - 3 :

Отметив в координатной плоскости точки, координаты которых занесены в таблицу (щелчок мышкой), проводим параболу (по щелчку).

Постройте самостоятельно графики функций: у = х2 + 2; у = х2 – 3; у = (х – 1)2; у = (х + 2)2; у = (х + 1)2 – 2; у = (х – 2)2 + 1; у = (х + 3)*(х – 3); у = х2 + 4х – 4; у = х2 – 6х + 11. При построении графика функции вида y=(x - m)2 + п удобно пользоваться заранее заготовленным шаблоном параболы у =
Слайд 9

Постройте самостоятельно графики функций: у = х2 + 2; у = х2 – 3; у = (х – 1)2; у = (х + 2)2; у = (х + 1)2 – 2; у = (х – 2)2 + 1; у = (х + 3)*(х – 3); у = х2 + 4х – 4; у = х2 – 6х + 11. При построении графика функции вида y=(x - m)2 + п удобно пользоваться заранее заготовленным шаблоном параболы у = х2 .

шаблон параболы у = х2

Далее можно сверить свои результаты с тем, что должно быть в действительности

Список похожих презентаций

Преобразования графиков функций

Преобразования графиков функций

y=f(x) y=|f(x)| y=f(|x|) |y|=f(x) |y|=|f(x)| y=|f(|x|)|. Актуальность: Эта тема актуальна, т.к. в конце 11 класса необходимо сдавать единый государственный ...
«Примеры преобразования графиков функций»

«Примеры преобразования графиков функций»

у = х3 у = -х3 у = (х - 1)3 у = х3 + 1 у = 2х3 у = (2х)3 х = у3. у = х4 у = -х4 у = (-х)4 у = (х-1)4 у = х4-1 у = -2х4 x = y4. у = 3х у = 3-х у = ...
Преобразования графиков функций

Преобразования графиков функций

A B C x y 0 1. В качестве исходного графика функции y=f(x) выберем ломанную, состоящую из двух звеньев, заданных точками A(-5;-2), B(-2;4) и C(2;2). ...
Построение диаграмм и графиков функций

Построение диаграмм и графиков функций

Диаграмма (график) — это наглядное графическое представление числовых данных. Основные типы диаграмм. Линейчатая Круговая Линии (график). показывает ...
"Взаимное расположение графиков функций"

"Взаимное расположение графиков функций"

угловой коэффициент прямой, условие параллельности прямых. ТЕМА УРОКА:. Давайте узнаем имя одного математика, который ввел обозначение функций. Для ...
Взаимное расположение графиков линейных функций.

Взаимное расположение графиков линейных функций.

Экспресс – опрос:. Какую функцию называют линейной? Что является графиком линейной функции? Какой формулой задаётся прямая пропорциональность? От ...
Взаимное расположение графиков линейных функций.

Взаимное расположение графиков линейных функций.

Цели урока. Цели: Рассмотреть разные случаи взаимного расположения графиков линейных функций. Научились распознавать взаимное расположение графиков ...
Взаимное расположение графиков линейных функций.

Взаимное расположение графиков линейных функций.

Цели урока:. Выяснить зависимость расположения графиков линейных функций от значений k и b. Научиться по внешнему виду определять взаимное расположение ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Веселый тест. Интеллектуальная разминка. 1. Какие числа употребляются при счете а)природные; б)натуральные; в)искусственные; 2. Как называют верхний ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Какие функции вам известны? Какой формулой задается каждая из этих функций? Как называется переменная x и y в формуле, задающий функцию? Что является ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Проверка домашней работы. № 324. у=2х 4 2. № 329 (б). у = 5х А (6; -2); -2 = 5 · 6; -2 ≠ 30; А не принадлежит графику функции В (-2; -10); -10 = 5 ...
Взаимное расположение графиков линейных функций".

Взаимное расположение графиков линейных функций".

"Числа не Боги, они не управляют миром, они показывают, как управляется мир". (поэт, гений немецкой литературы, Гёте). -2 2 5 1 -4 0. 3 6. 4 -1. -3. ...
Построение графиков функций, содержащих переменную под знаком модуля

Построение графиков функций, содержащих переменную под знаком модуля

1. Построение графиков функций вида y=|f(x)|. По определению модуля, выражение y=|f(x)| равносильно системе f(x), если f(х)0, Y= -f(x), если f(x). ...
Симметрия функций и преобразование их графиков

Симметрия функций и преобразование их графиков

ЦЕЛИ:. Повторить определение функции; основные понятия, связанные с ней; способы задания функции. Ввести понятие чётной и нечётной функции. Освоить ...
Свойства производной. Построение графиков функций

Свойства производной. Построение графиков функций

Построение графика функции, заданной формулой, начинают с её исследования 1) Находят область определения функции 2) Выясняют, является ли функция ...
Решение задач на построение графиков алгебраических функций

Решение задач на построение графиков алгебраических функций

Анализ содержания материала. Кто не знает в какую гавань он плывет, для того нет попутного ветра. Сенека. Главной целью данной темы является: научить ...
Построение графиков функций, содержащих знак модуля

Построение графиков функций, содержащих знак модуля

Содержание. I. Введение. II. Основная часть. 1) Понятия и определения. 2) Теоремы, следствия. 3) Построение графиков. III. Заключение. IV. Список ...
Построение графиков функций, содержащих модуль

Построение графиков функций, содержащих модуль

Цели урока:. Продолжить формирование навыка построения графиков функций, содержащих модуль; обратить внимание на геометрический смысл модуля; Научить ...
Построение графиков функций и уравнений, содержащих переменную под знаком модуля

Построение графиков функций и уравнений, содержащих переменную под знаком модуля

Тема урока: «Построение графиков функций и уравнений, содержащих переменную под знаком модуля». Тип урока:. «Урок обобщения и систематизации знаний». ...
Построение графиков функций, содержащих выражения под знаком модуля

Построение графиков функций, содержащих выражения под знаком модуля

Цель работы:. построение графиков графики функций, содержащие выражения под знаком модуля. Частный случай (под знаком модуля одно выражение и нет ...

Конспекты

Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Тема:. Взаимное расположение графиков линейных функций. Тип урока. : Совершенствование знаний, умений, и навыков. Цели урока:. Выяснить ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Муниципальное образовательное учреждение средняя общеобразовательная школа № 33 с углубленным изучением отдельных предметов. Дзержинского района ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Тема урока: « Взаимное расположение графиков линейных функций». Цель урока:. закрепить умения и навыки нахождения углового коэффициента, познакомить ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций. Учитель: Мисник И.Ю., г Уссурийск. Тип урока: изучение нового материала. Цели урока:. Образовательная. ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа №10. Урок алгебры для 7 класса. «Взаимное расположение ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Учитель: Короленко Евгения Николаевна. Конспект урока по алгебре 7 класса. Тема «Взаимное расположение графиков линейных функций». Цели:. Образовательные:. ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

ПЛАН-КОНСПЕКТ УРОКА Конспект урока по теме: «Взаимное расположение графиков линейных функций». . ФИО (полностью). . Чичерова Татьяна ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Конспект урока по алгебре в 10 классе. Васильева Екатерина Сергеевна. ,. . учитель математики. ОГБОУ «Смоленская специальная (коррекционная). ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Тема урока : "Преобразование графиков тригонометрических функций ". . . Цели: . . -. образовательные:. обобщить и систематизировать знания ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

. . Воробьева Ирина Юрьевна. учитель математики. 1 категории. ГУ «Экономический лицей». г. Семей. Методическая разработка урока. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:6 февраля 2019
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации