- Преобразование графиков тригонометрических функций

Конспект урока «Преобразование графиков тригонометрических функций» по алгебре для 10 класса


Конспект урока по алгебре в 10 классе


Васильева Екатерина Сергеевна,

учитель математики

ОГБОУ «Смоленская специальная (коррекционная)

общеобразовательная школа I и II видов»

Смоленск

Тема урока: «Преобразование графиков тригонометрических функций».





































Название модуля: преобразование графиков тригонометрических функций.

Интегрирующая дидактическая цель: отработать навыки построения графиков тригонометрических функций.

Целевой план действий для учащихся:

  • повторить основные свойства тригонометрических функций;

  • отработать навык преобразования графиков тригонометрических функций;

  • способствовать развитию логического мышления;

  • воспитывать интерес к изучению предмета.

Банк информации.

Входной контроль.

Назовите свойства функций y = sin x (рис. 1).




Рис. 1

Свойства:

  1. D(y)=R

  2. E(y)=[-1;1], функция ограничена

  3. sin(-x)=-sinx, функция нечётная

  4. Наименьший положительный период: 2π
    sin (x+2πn)= sin x, n Є Z, x Є R.

  5. sin x=0 при x=πk, kЄ Z

  6. sin x>0, x Є (2πk;2π+2πk), k Є Z

  7. sin x

  8. Наибольшее значение, равное 1, y=sin x принимает в точках x=π/2+ 2πk, k Є Z.

  9. Наименьшее значение, равное -1, y=sin x принимает в точках x=3π/2+ 2πk, k Є Z.

Рассмотрим график фукции y= cos x (рис. 2).




Рис. 2

Свойства:

  1. D (y)=R

  2. E (y)=[-1;1], функция ограничена

  3. cos(-x)= cos x, функция чётная

  4. Наименьший положительный период: 2π
    cos (x+2πn)=cos x, n Є Z, x Є R

  5. cos x=0 при x=π/2+πk, kЄZ

  6. cos x>0, x Є (-π/2+2πk; π/2+2πk), k Є Z

  7. cos x

  8. Наибольшее значение, равное 1, y=cos x принимает в точках x= 2πk, k Є Z.

  9. Наименьшее значение, равное -1, y=cos x принимает в точках x=π+ 2πk, k Є Z.

Cледующий график функции y=tg x (рис. 3)




Риc. 3

Свойства:

  1. D(y)-множество всех действительных чисел, кроме чисел вида x=π/2 +πk, k Є Z

  2. E(y)=(-∞;+ ∞), функция неограниченная

  3. tg(-x)=-tg x, функция нечётная

  4. наименьший положительный период: π
    tg(x+π)= tg x

  5. tgx= 0 при x=πk, k Є Z

  6. tg x> 0, x Є ( πk; π/2+πk), k Є Z

  7. tg x

Следующий график функции y=ctg x (рис. 4)




Рис. 4

Свойства:

  1. D(y)-множество всех действительных чисел, кроме чисел вида x=πk, k Є Z

  2. E(y)= (-∞;+ ∞), функция неограниченная

  3. ctg(-x)=-ctg x, функция нечётная

  4. Наименьший положительный период: π
    ctg(x+π)=tg x

  5. ctg x = 0 при x=π/2+πk, k Є Z

  6. ctg x>0, x Є( πk; π/2+πk), k Є Z

  7. ctg x

Объяснение материала.


  1. Для построения графика функции y=f(x)+a, где a - постоянное число, надо перенести график y=f(x) вдоль оси ординат. Если a>0, то график переносим параллельно самому себе вверх, если a

  2. Для построения графика функции y=kf(x) надо растянуть график функции y=f(x) в k раз вдоль оси ординат. Если |k|>1, то происходит растяжение графика вдоль оси OY, если 0k|, то – сжатие.

  3. График функции y=f(x+b) получается из графика y=f(x) путем параллельного переноса вдоль оси абсцисс. Если b>0 , то график перемещается влево, если b

  1. Для построения графика функции y=f(kx) надо растянуть график y=f(x) вдоль оси абсцисс. Если |k|>1, то происходит сжатие графика вдоль оси , если 0

Закрепление материала.

Уровень А

Частная дидактическая цель: отработать навык построения тригонометрических функций путем преобразований.

Методический комментарий для учащихся: постройте графики функций, выполнив преобразования.

1.

График функции получается из графика путем растяжения вдоль оси Ox в 3 раза.




2.

График функции получается из графика путем растяжения вдоль оси Oy в 2 раза.




3.

График функции получается из графика путем параллельного переноса на 2 единицы вверх вдоль оси Oy.




График функции получается из графика путем параллельного переноса вдоль оси абсцисс на единиц влево.




Г
рафик функции получается из графика путем сжатия вдоль оси Oy в 4 раза.



Уровень В.

Частная дидактическая цель: отработать навык построения графиков тригонометрических функций путем последовательного применения преобразований.

Методический комментарий для учащихся: постройте графики функций, выполнив преобразования.

График функции получается из графика путем параллельного переноса вдоль оси абсцисс на единиц вправо.


График функции получается из графика функции путем последовательного выполнения следующих преобразований:

1) параллельный перенос на единицы влево вдоль оси абсцисс

2) сжатие вдоль оси Оy в 4 раза.




3.

График функции получается из графика функции , каждая ордината которого изменяется в -2 раза. Для этого выполняем следующие преобразования:

1) отображаем симметрично относительно оси Ox,

2) растягиваем в 2 раза вдоль оси Oy.




4.

График функции получается из графика функции последовательного выполнения следующих преобразований:

1) сжатие вдоль оси абсцисс в 2 раза;

2) растяжение в 3 раза вдоль оси Oy;

3) параллельный перенос на 1 единицу вверх вдоль оси ординат.




Уровень С.

Частная дидактическая цель: отработать навык построения графиков тригонометрических функций путем последовательного применения преобразований.

Методический комментарий для учащихся: укажите, какие преобразования нужно выполнить для построения графиков. Постройте графики.

1.

График функции получается из графика функциипутем последовательного выполнения следующих преобразований:

1) отображение симметрично относительно оси Ox,

2) сжатие в 2 раза вдоль оси Oy;

3) параллельный перенос на 2 единицы вниз вдоль оси Оy.




2.

График функции получается из графика функции последовательного выполнения следующих преобразований:

1) параллельный перенос вдоль оси абсцисс на единиц влево,

2) растяжение в 5 раза вдоль оси Oy.

3
.

График функции получается из графика функции последовательного выполнения следующих преобразований:

1) растяжение вдоль оси абсцисс в 2 раза;

2) параллельный перенос на единиц влево вдоль оси абсцисс.

3) растяжение в 2 раза вдоль оси Oy.

4.

Так как cos (-x)=cos x, следовательно, y= cos x - чётная функция, значит, график функции тот же, что и график функции y= cos x.





5.

График функции получается из графика функции .Части графика функции , расположенные ниже оси абсцисс, зеркально отразятся и будут распо
ложены в верхней полуплоскости.



Использованные ресурсы:

http://tvsh2004.narod.ru/alg07.html

http://www.aiportal.ru/services/graph.html

Здесь представлен конспект к уроку на тему «Преобразование графиков тригонометрических функций», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра (10 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа №10. Урок алгебры для 7 класса. «Взаимное расположение ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Муниципальное образовательное учреждение средняя общеобразовательная школа № 33 с углубленным изучением отдельных предметов. Дзержинского района ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Учитель: Короленко Евгения Николаевна. Конспект урока по алгебре 7 класса. Тема «Взаимное расположение графиков линейных функций». Цели:. Образовательные:. ...
Преобразование тригонометрических выражений

Преобразование тригонометрических выражений

Здоровец Людмила Александровна учитель математики высшей категории. Государственное учреждение «Средняя школа №5». . . 150009, Северо-Казахстанская ...
Экскурс в мир тригонометрических функций

Экскурс в мир тригонометрических функций

Славенко Н. В. МОУ СОШ № 32 г. . г Братск. . . Урок обобщающего повторения в 11 классе. . «Экскурс в мир тригонометрических функций». . ...
Преобразование тригонометрических выражений

Преобразование тригонометрических выражений

учитель математики. Кулик Наталья Николаевна,. специалист высшей категории. . первого уровня. ГУ «Средняя школа № 19. отдела образования. ...
Свойства функций. Чтение графиков функций

Свойства функций. Чтение графиков функций

Муниципальное бюджетное образовательное учреждение «Усть – Вельская СОШ № 23». Свойства функций. Чтение графиков функций. Конспект урока по алгебре. ...
Построение графиков функций, содержащих знак абсолютной величины

Построение графиков функций, содержащих знак абсолютной величины

3. . . Урок алгебры в 9 классе. Тема урока: «Построение графиков функций, содержащих знак абсолютной величины». Цели урока:. 1. Обобщить ...
Свойства тригонометрических функций

Свойства тригонометрических функций

Тема: Свойства тригонометрических функций. Цель:. Повторить, закрепить, обобщить свойства тригонометрических функций. Совершенствовать умения и ...
Применение производной к построению графиков функций

Применение производной к построению графиков функций

Применение производной к построению графиков функций. Алгебра и начала анализа 11 класс. Автор: Димакова Ольга Николаевна – учитель математики ...
Исследование свойств функций и построение графиков

Исследование свойств функций и построение графиков

Информационно-коммуникационные технологии. Интегрированный урок. 10 класс Алгебра и начала анализа + информатика. 2 урока. Тема. : «Исследование ...
Распознавание графиков линейной, квадратичной функций и обратной пропорциональности

Распознавание графиков линейной, квадратичной функций и обратной пропорциональности

МБОУ «Кимовская средняя общеобразовательная школа Спасского муниципального района РТ». Урок по алгебре в 9 классе на тему. «Распознавание ...
Примеры решения тригонометрических уравнений

Примеры решения тригонометрических уравнений

Урок алгебры в 10-м классе. Тема: «Примеры решения тригонометрических уравнений». Олей Вера Ивановна. учитель математики. Разделы:.  . Преподавание ...
Применение основных тригонометрических тождеств к преобразованию выражений

Применение основных тригонометрических тождеств к преобразованию выражений

Урок. Алгебра. 9 класс. Тема:. . «. Применение основных тригонометрических тождеств. . к преобразованию выражений». . Цели:. . Повторить ...
Преобразование чисел, полученных при измерении

Преобразование чисел, полученных при измерении

Преобразование чисел, полученных при измерении. 7 класс. . Цели:. Коррекционно-образовательная:. . . Закрепление навыков учащихся в преобразовании ...
Графики функций и их производных

Графики функций и их производных

МОУ Карагайская СОШ. (итоговое повторение). Учитель математики и информатики: Бурдова И.К. ЦЕЛИ УРОКА. :. . ...
Решение тригонометрических уравнений

Решение тригонометрических уравнений

Разработка темы. . «Решение тригонометрических уравнений». в итоговом повторении в 11 классе,. . при подготовке к экзаменам. Цель уроков:. ...
Решение тригонометрических уравнений

Решение тригонометрических уравнений

Государственное учреждение «Аулиекольская школа-гимназия им.С.Баймагамбетова отдела образования Аулиекольского района». Конспект урока ...
Общие методы решения тригонометрических уравнений

Общие методы решения тригонометрических уравнений

. Муниципальное общеобразовательное учреждение. Малоибряйкинская основная общеобразовательная школа. Похвистневского района Самарской области. ...
Обобщающий урок. Преобразование выражений, содержащих квадратные корни

Обобщающий урок. Преобразование выражений, содержащих квадратные корни

Урок алгебры в 8 классе. Тема. : Обобщающий урок. Преобразование выражений, содержащих квадратные корни. Учитель математики. : Байтурова А.Р. ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:17 августа 2016
Категория:Алгебра
Классы:
Поделись с друзьями:
Скачать конспект