- Обратные тригонометрические функции

Презентация "Обратные тригонометрические функции" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36

Презентацию на тему "Обратные тригонометрические функции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 36 слайд(ов).

Слайды презентации

Обратные тригонометрические функции. Работу выполнила: Ученица 10 А класса МОУ «Гимназии №125» Щепеткова Дарья Рук. Чикрин Е.А.
Слайд 1

Обратные тригонометрические функции

Работу выполнила: Ученица 10 А класса МОУ «Гимназии №125» Щепеткова Дарья Рук. Чикрин Е.А.

Историческая справка. Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу тригонометрическими функциями, встречаются уже в 3 в. до н. э. в работах математиков Древней Греции – Евклида,
Слайд 2

Историческая справка

Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике и окружности, являющиеся по существу тригонометрическими функциями, встречаются уже в 3 в. до н. э. в работах математиков Древней Греции – Евклида, Архимеда, Аполлония Пергского и других. В последующий период математика долгое время наиболее активно развивалась индийскими и арабсками учеными. В трудах по астрономии Ариабхаты появляется термин «ардхаджива». Позднее привилось более краткое название «джива», а при переводе математических терминов в XII в. Это слово было заменено латинским «sinus». Принципиальное значение имело составление Птолемеем первой таблицы синусов(долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии. Слово косинус –это сокращение латинского выражения «complementy sinus»(синус). Тангенсы возникли в связи с решением задачи об определении длины тени.Тангенс (а также котангенс, секанс и косеканс) введен в X веке Абу-л-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XIV в. Т. Бравердином, а позже астрономом Региомонтаном. Первым автором, который использовал специальные символы для обратных тригонометрических функций был, Бернулли. В 1729 и в1736 годах он писал as и at соответственно вместо arcsin и arctg.Современные обозначения arcsin и arctg появляются в 1772 г. в работах венского математика Шерфера известного французского ученого Лагранжа.Приставка «arc» происходит от латинского «arcus»(лук, дуга), что вполне согласуется со смыслом понятия: arcsin x, например,- это угол (а можно сказать и дуга) синус которого равен x.

Для тригонометрических функций можно определить обратные функции (круговые функции, аркфункции). Они обозначаются соответственно , , , . К обратным тригонометрическим функциям обычно относят шесть функций: аркси́нус (обозначение: arcsin) аркко́синус (обозначение: arccos) аркта́нгенс (обозначение: ar
Слайд 3

Для тригонометрических функций можно определить обратные функции (круговые функции, аркфункции). Они обозначаются соответственно , , , .

К обратным тригонометрическим функциям обычно относят шесть функций: аркси́нус (обозначение: arcsin) аркко́синус (обозначение: arccos) аркта́нгенс (обозначение: arctg; в иностранной литературе arctan) арккота́нгенс (обозначение: arcctg; в иностранной литературе arccot или arccotan) арксе́канс (обозначение: arcsec) арккосе́канс (обозначение: arccosec; в иностранной литературе arccsc)

Почему можно определить обратную тригонометрическую функцию. Теорема о корне: Пусть функция f возрастает (или убывает) на промежутке I, число a – любое из значений, принимаемых f на этом промежутке. Тогда уравнение F(x)=a имеет единственный корень в промежутке I. На промежутке функция монотонна, воз
Слайд 4

Почему можно определить обратную тригонометрическую функцию.

Теорема о корне: Пусть функция f возрастает (или убывает) на промежутке I, число a – любое из значений, принимаемых f на этом промежутке. Тогда уравнение F(x)=a имеет единственный корень в промежутке I. На промежутке функция монотонна, возрастает, т.е. все значения от -1 до 1 принимает ровно один раз, поэтому можно определить обратную функцию - arcsin x. На промежутке функция монотонна, убывает, т.е. принимает все значения от -1 до 1 ровно один раз, поэтому можно определить обратную тригонометрическую функцию. На интервале функция монотонна, возрастает и принимает все значения из R ровно один раз, поэтому можно определить обратную тригонометрическую функцию. На интервале функция монотонна, убывает , принимает все значения из R ровно один раз, поэтому мы можем определить обратную тригонометрическую функцию.

Арксинус. Арксинус -угол из промежутка синус которого равен а. Если , то Функция y = arcsinx непрерывна и ограничена на всей своей числовой прямой. Функция y = arcsinx является строго возрастающей. --функция нечетная Таким образом, arcsina, (arctga) - угол первой четверти, если a - положительно, и у
Слайд 5

Арксинус

Арксинус -угол из промежутка синус которого равен а. Если , то Функция y = arcsinx непрерывна и ограничена на всей своей числовой прямой. Функция y = arcsinx является строго возрастающей. --функция нечетная Таким образом, arcsina, (arctga) - угол первой четверти, если a - положительно, и угол четвертой четверти, если a - отрицательно.

Арккосинус. Арккосинус -угол из промежутка , косинус которого равен а. Если , то Функция y = arccosx непрерывна и ограничена на всей своей числовой прямой. Функция y = arccosx является строго убывающей. arccosa (arctga) - угол первой четверти, если a - положительно, и угол второй четверти, если a -
Слайд 6

Арккосинус

Арккосинус -угол из промежутка , косинус которого равен а. Если , то Функция y = arccosx непрерывна и ограничена на всей своей числовой прямой. Функция y = arccosx является строго убывающей. arccosa (arctga) - угол первой четверти, если a - положительно, и угол второй четверти, если a - отрицательно.

Арктангенс. Арктангенс -угол из интервала тангенс которого равен а. - нечётная функция Функций непрерывна и ограничена на всей своей числовой прямой. Функция является строго возрастающей.
Слайд 7

Арктангенс

Арктангенс -угол из интервала тангенс которого равен а. - нечётная функция Функций непрерывна и ограничена на всей своей числовой прямой. Функция является строго возрастающей.

Арккотангенс. Арккотангенс -угол из интервала , котангенс которого равен а. Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго убывающей.
Слайд 8

Арккотангенс

Арккотангенс -угол из интервала , котангенс которого равен а.

Функция непрерывна и ограничена на всей своей числовой прямой. Функция является строго убывающей.

Преобразований сумм обратных тригонометрических функций. На промежутке функция возрастает, т.е. каждое свое значение принимает ровно один раз, т.е. если на промежутке . ; Аналогично:
Слайд 9

Преобразований сумм обратных тригонометрических функций

На промежутке функция возрастает, т.е. каждое свое значение принимает ровно один раз, т.е. если на промежутке .

; Аналогично:

Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями. Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на та
Слайд 10

Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями

Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность( функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения). Поэтому справедливы следующие равносильные переходы.

I

Замечание. Какой из двух равносильных систем пользоваться при решении уравнений 1а), зависит от того, какое неравенство проще: | f(x) | £ 1 (тогда используем первую систему), или  | g(x) | £ 1 (в этом случае используем вторую систему).

Примеры. Пример 1. Решить уравнение Решение. Уравнение равносильно системе: Замечание. Решать неравенство, входящее в систему не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения.
Слайд 11

Примеры

Пример 1. Решить уравнение Решение. Уравнение равносильно системе:

Замечание. Решать неравенство, входящее в систему не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения.

Пример 2. Решить неравенство 3arcsin 2x
Слайд 12

Пример 2. Решить неравенство 3arcsin 2x

II. Замечание. Какой из двух равносильных систем пользоваться при решении уравнений 2а), зависит от того, какое неравенство проще: | f(x) | £ 1 (тогда используем первую систему), или  | g(x) | £ 1 (в этом случае используем вторую систему).
Слайд 13

II

Замечание. Какой из двух равносильных систем пользоваться при решении уравнений 2а), зависит от того, какое неравенство проще: | f(x) | £ 1 (тогда используем первую систему), или  | g(x) | £ 1 (в этом случае используем вторую систему).

Пример 3. Решить неравенство Решение. Ответ: {– 2}.
Слайд 14

Пример 3. Решить неравенство Решение.

Ответ: {– 2}.

Пример 4. Решить уравнение Решение. Так как , то имеет место следующая цепочка равносильных преобразований:
Слайд 15

Пример 4. Решить уравнение Решение. Так как , то имеет место следующая цепочка равносильных преобразований:

III. а) arctg f(x) = arctg g(x) f(x) = g(x); б) acrtg f(x) ≤ arctg g(x)   f(x) ≤ g(x). а) arcctg f(x) = arcctg g(x) f(x) = g(x); б) arcctg f(x) ≤ arcctg g(x)   f(x) ≥ g(x). IV
Слайд 16

III

а) arctg f(x) = arctg g(x) f(x) = g(x); б) acrtg f(x) ≤ arctg g(x)   f(x) ≤ g(x).

а) arcctg f(x) = arcctg g(x) f(x) = g(x); б) arcctg f(x) ≤ arcctg g(x)   f(x) ≥ g(x).

IV

Пример 5. Решить неравенство Решение. Неравенство равносильно следующему:
Слайд 17

Пример 5. Решить неравенство Решение. Неравенство равносильно следующему:

Уравнения и неравенства,  левая и правая части которых являются  разноименными обратными тригонометрическими функциями. При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождества
Слайд 18

Уравнения и неравенства,  левая и правая части которых являются  разноименными обратными тригонометрическими функциями

При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда Итак, arcsin f(x) = arccos g(x)   (1)

Рассуждая аналогично, можно получить следующие переходы: Замечание. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого и . В противном случае множество значений левой и правой частей уравнения не пересекаются.
Слайд 19

Рассуждая аналогично, можно получить следующие переходы:

Замечание. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого и . В противном случае множество значений левой и правой частей уравнения не пересекаются.

Пример 6. Решить уравнение Решение. Корень является посторонним. Ответ: {1}.
Слайд 20

Пример 6. Решить уравнение Решение. Корень является посторонним. Ответ: {1}.

Пример 7. Решить уравнение Решение. Корень x = – 2 является посторонним. Ответ:
Слайд 21

Пример 7. Решить уравнение Решение. Корень x = – 2 является посторонним. Ответ:

Пример 8. Решить уравнение arctg (2sin x) = arcctg (cos x). Решение. Корни вида являются посторонними. Ответ:
Слайд 22

Пример 8. Решить уравнение arctg (2sin x) = arcctg (cos x). Решение. Корни вида являются посторонними. Ответ:

При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций. Пример 9. Решить неравенство Решение. Рассмотрим функцию и решим неравен
Слайд 23

При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций. Пример 9. Решить неравенство Решение. Рассмотрим функцию и решим неравенство f(x) ≤ 0 методом интервалов. 1) Найдем D(f). Для этого решим систему 2) Найдем нули f(x). Для этого решим уравнение Корень x = – 2 является посторонним

3) Решим неравенство f(x) ≤ 0 методом интервалов. Замечание 4. Заметим, что найдя корень уравнения можно было не обращаться к методу интервалов, а воспользоваться тем, что функция является монотонно возрастающей, а функция монотонно убывающей на отрезке . Поэтому решением исходного неравенства являе
Слайд 24

3) Решим неравенство f(x) ≤ 0 методом интервалов.

Замечание 4. Заметим, что найдя корень уравнения можно было не обращаться к методу интервалов, а воспользоваться тем, что функция является монотонно возрастающей, а функция монотонно убывающей на отрезке . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.

При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и мн
Слайд 25

При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,

Замена переменной. Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометр
Слайд 26

Замена переменной

Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.

Пример 10. Решить уравнение Решение. Обозначим После преобразований получим уравнение Поскольку  откуда Ответ:

Пример 11. Решить неравенство Решение. Пусть arccos x = t, 0 ≤ t ≤ p. Тогда Поскольку  откуда  Ответ: [– 1; cos 2] И [cos 1; 1]. Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества
Слайд 27

Пример 11. Решить неравенство Решение. Пусть arccos x = t, 0 ≤ t ≤ p. Тогда Поскольку  откуда  Ответ: [– 1; cos 2] И [cos 1; 1]. Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества

Пример 12. Решить уравнение Решение. Данное уравнение равносильно следующему: Пусть arcsin x = t, Тогда  
Слайд 28

Пример 12. Решить уравнение Решение. Данное уравнение равносильно следующему: Пусть arcsin x = t, Тогда  

IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются с
Слайд 29

IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы. Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения. Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения. Теорема 3. Если   то на множестве X уравнение f(x) = g(x) равносильно системе

Пример 13. Решить уравнение 2arcsin 2x = 3arccos x. Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный. Ответ: {0,5}. Пример 14. Решить
Слайд 30

Пример 13. Решить уравнение 2arcsin 2x = 3arccos x. Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный. Ответ: {0,5}. Пример 14. Решить уравнение Решение. Пусть Тогда уравнение примет вид Функции являются монотонно возрастающими. Поэтому функция также является монотонно возрастающей. В силу теоремы 1 уравнение имеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому Ответ: {– 1; 0}.

Пример 15. Решить неравенство Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке функцию Уравнение в силу теоремы 1 имеет не более одного корня. Очевидно, что – корень этого уравнения. Поэтому решением неравенства является отрезок Ответ:
Слайд 31

Пример 15. Решить неравенство Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке функцию Уравнение в силу теоремы 1 имеет не более одного корня. Очевидно, что – корень этого уравнения. Поэтому решением неравенства является отрезок Ответ:

Пример 16. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = . Решение. Поскольку arcsin  то левая часть уравнения не превосходит Знак равенства возможен, лишь если каждое слагаемое левой части равно Таким образом, уравнение равносильно системе: Решение последней системы не представляет труд
Слайд 32

Пример 16. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = . Решение. Поскольку arcsin  то левая часть уравнения не превосходит Знак равенства возможен, лишь если каждое слагаемое левой части равно Таким образом, уравнение равносильно системе: Решение последней системы не представляет труда.

Уравнения и неравенства с параметрами. Пример 1. Решить уравнение с параметром a: Решение. Уравнение равносильно уравнению Рассмотрим два случая: 1) a = 0. В этом случае система примет вид: 2) a ≠ 0. В этом случае уравнение системы является квадратным. Его корни: Так как | x | ≤ 1, то Если a = – 1,
Слайд 33

Уравнения и неравенства с параметрами.

Пример 1. Решить уравнение с параметром a: Решение. Уравнение равносильно уравнению Рассмотрим два случая: 1) a = 0. В этом случае система примет вид: 2) a ≠ 0. В этом случае уравнение системы является квадратным. Его корни: Так как | x | ≤ 1, то Если a = – 1, то Если то уравнение имеет два корня. Ответ: при при a = – 1 и a = 0 x = 1; при прочих a решений нет.

Пример 2. Решить неравенство с параметром a: Решение. Неравенство равносильно системе. Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > первое неравенство системы равносильно неравенству x ≥ 1, при a  решений нет; при a =– x = 1;
Слайд 34

Пример 2. Решить неравенство с параметром a: Решение. Неравенство равносильно системе

Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > первое неравенство системы равносильно неравенству x ≥ 1, при a решений нет; при a =– x = 1;

Пример 3. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2x – a). Решение. Данное уравнение равносильно системе Графиком квадратного трехчлена является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1  2a. Это корень Ответ: при любом a
Слайд 35

Пример 3. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2x – a). Решение. Данное уравнение равносильно системе Графиком квадратного трехчлена является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень Ответ: при любом a

Список используемой литературы. 1.	Коломогоров «алгебра начало анализа» 2.	Вельмушкина, Н. Уравнения, содержащие обратные тригонометрические функции [Текст] / Н. Вельмушкина // Математика / Прил. к ПС, 2004. – №6. – С.26-27. 3.	В.С. Крамор, П.А Михайлов " Тригонометрические функции ." Моск
Слайд 36

Список используемой литературы

1. Коломогоров «алгебра начало анализа» 2. Вельмушкина, Н. Уравнения, содержащие обратные тригонометрические функции [Текст] / Н. Вельмушкина // Математика / Прил. к ПС, 2004. – №6. – С.26-27. 3. В.С. Крамор, П.А Михайлов " Тригонометрические функции ." Москва "Просвещение " 1983г. 4. В. Н. Литвиненко, А. Г. Мордкович . " Практикум по решению математических задач. " Москва "Просвещение " 1984г. 5. А.П. Ершова , В. В. Голобородько " Алгебра . Начала анализа. " "ИЛЕКСА " Москва 2003г 6. Кожеуров, П.Я. Тригонометрия [Текст] / П.Я. Кожеуров. – М.: Физматгиз, 1963. – 320с. 7. Савин, А. Тригонометрия [Текст] / А. Савин // Квант, 1996. – №4.

Список похожих презентаций

Обратные тригонометрические функции

Обратные тригонометрические функции

15.05.2019. I. Математический диктант. 1)D(y)= 2)E(y)= 3) 4)sin(-x)=-sin x 5)Возрастает на Убывает на 6)Периодичная. I вариант y=sin x II вариант ...
Обратные тригонометрические функции

Обратные тригонометрические функции

Содержание: Обратные тригонометрические функции, свойства, графики Историческая справка Преобразование выражений, содержащих обратные тригонометрические ...
Уравнения, содержащие обратные тригонометрические функции

Уравнения, содержащие обратные тригонометрические функции

1.Выразить через функцию от х:. 2.Вычислить: а) б) 4.Упростить:. 3.Найти область определения функции. Т-3. Выразить arcsinx через другие функции. ...
Тригонометрические функции числового аргумента

Тригонометрические функции числового аргумента

- вычисление значений тригонометрических функций; - упрощение тригонометрических выражений. Цель урока. Нужно знать:. - определения тригонометрических ...
Взаимно обратные функции

Взаимно обратные функции

Задача. у = f (x), x - ! Найти значение у при заданном значении х. Задача. у = f (x), у- ! Найти значение х при заданном значении у. Дано: у = 2х ...
Тригонометрические функции угла

Тригонометрические функции угла

Что такое косинус угла ? Это число, которое можно определить следующим образом:. cos α ≈ 0,4 1 0 -1. В прямоугольной системе коодинат. проводим полуокружность. ...
Тригонометрические функции углового аргумента

Тригонометрические функции углового аргумента

Цель урока: отработка навыка нахождения значений тригонометрических функций углового аргумента. Задачи: 1.обобщить и систематизировать учебный материал ...
Тригонометрические функции углового аргумента - алгебра,

Тригонометрические функции углового аргумента - алгебра,

Тригонометрическая функция углового аргумента. Что будем изучать:. Определение. Примеры. Вспомним геометрию. Градусная мера угла. Радианная мера угла. ...
Тригонометрические функции и их свойства

Тригонометрические функции и их свойства

Системы счисления. Память человечества не сохранила, не донесла до нас имя изобретателя колеса или гончарного круга. Это и не удивительно: более 10 ...
Тригонометрические функции одного и того же аргумента

Тригонометрические функции одного и того же аргумента

Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, кто желает к ним приобщиться, должен достигнуть этого собственной ...
Тригонометрические функции

Тригонометрические функции

Числовая окружность. 1. 2. М • В С D 4. А + –. у. На макетах обозначены лишь главные имена точек – числа, принадлежащие но у точек на окружности бесконечное ...
Тригонометрические функции

Тригонометрические функции

Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника 1) Синус - отношение противолежащего катета ...
Взаимно обратные функции

Взаимно обратные функции

Цель проекта: Изучить поведение взаимно обратных функций. Установить связь графиков прямой и обратной функций. Подготовиться к успешной сдаче ЕГЭ. ...
Тригонометрические функции углов в произвольном треугольнике 1-2

Тригонометрические функции углов в произвольном треугольнике 1-2

Продолжите фразу:. Синусом острого угла прямоугольного треугольника называется. А С В. отношение противолежащего катета к гипотенузе. Косинусом острого ...
Тригонометрические функции

Тригонометрические функции

Содержание. Введение................................................... .......3-5слайд Начало изучения..............................................6-7 ...
Основные тригонометрические функции

Основные тригонометрические функции

Пояснительная записка. В результате изучения курса математики учащиеся должны понимать, что функция – математическая модель, позволяющая описывать ...
Предел функции

Предел функции

Содержание. Предел функции в точке Односторонние пределы Предел функции при x стремящемся к бесконечности Основные теоремы о пределах Вычисление пределов ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Цели:. Формирование у учащихся умения строить график квадратичной функции в соответствии со схемой. определение. Квадратичной функцией называется ...
Понятие функции

Понятие функции

Множество х: Все Жильцы. Множество y: номера квартир. Правило соответствия (зависимости) между множествами : «Каждому жильцу дома будет соответствовать ...
Свойства функции

Свойства функции

Для построения графика функции. дадим независимой переменной несколько конкретных значений Если x = 0, то. Если x =1, то Если x = 4, то Если x = 6,25, ...

Конспекты

Обратные тригонометрические функции

Обратные тригонометрические функции

Разработка урока по теме: «Обратные тригонометрические функции». 10 класс. Тип урока. : изучение нового материала. Цели урока. :. обучающие. ...
Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции

Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции

Конспект урока по алгебре и началам анализа по теме. «Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции». . ...
Тригонометрические функции острого угла

Тригонометрические функции острого угла

МКОУ СОШ с.п.Кара-Суу Черекского района КБР. Айшаева Фердаус Сулеймановна. . "Тригонометрические функции острого угла" Геометрия 8 класс. ...
Функции. Тригонометрические функции

Функции. Тригонометрические функции

Учитель математики ГБОУ СОШ № 230 с углубленным изучением химии и биологии. Ваганова Г. В. Тема. :. . « Функции. Тригонометрические ...
Тригонометрические функции

Тригонометрические функции

Урок по теме:. «. Тригонометрические функции. ». 10 класс. Составитель - учитель математики Апарина Е.Г. с. Майкопское. ...
Тригонометрические функции числового аргумента

Тригонометрические функции числового аргумента

Название работы: Урок с использованием готовых электронных образовательных ресурсов. . Автор (авторы):. Чуракова Нина Анатольевна(. chura. -. nina. ...
Свойства линейной функции

Свойства линейной функции

Государственное бюджетное образовательное учреждение. средняя общеобразовательная школа №200 с углубленным изучением финского языка. Красносельского ...
Производная сложной функции

Производная сложной функции

Тема: . “Производная . сложной функции. ”. Тип урока: . – урок изучения нового материала. Форма урока. : применение информационных технологий. ...
Простейшие тригонометрические уравнения и их решения

Простейшие тригонометрические уравнения и их решения

Алгебра 10 класс. Урок. №32. Дата. 20.11.2014. Тема:. Простейшие тригонометрические уравнения и их решения. Цели и задачи:. Знать формулы по ...
Применение производной к исследованию свойств функции и к решению прикладных задач

Применение производной к исследованию свойств функции и к решению прикладных задач

Конспект урока алгебры для учащихся 10 класса. Тема урока:. Применение производной к исследованию свойств функции и к решению прикладных задач. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:ученица 10 класса Щепеткова Дарья
Содержит:36 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации