- Основные тригонометрические функции

Презентация "Основные тригонометрические функции" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31

Презентацию на тему "Основные тригонометрические функции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 31 слайд(ов).

Слайды презентации

Дидактический материал тема: «Тригонометрические функции»
Слайд 1

Дидактический материал тема: «Тригонометрические функции»

Пояснительная записка. В результате изучения курса математики учащиеся должны понимать, что функция – математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, уметь логически мыслить, проявлять творческие способности на уровне, необходимом для прод
Слайд 2

Пояснительная записка

В результате изучения курса математики учащиеся должны понимать, что функция – математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, уметь логически мыслить, проявлять творческие способности на уровне, необходимом для продолжения образования и для самостоятельной деятельности. Данные дидактические материалы рассчитаны для курса математики 10 класса, обучающего по учебнику Алимов Ш.А. «Алгебра и начала анализа» по основной программе с учетом стандартов основного общего образования по математике.

После пройденного курса учащиеся должны знать: Определение области определения и множества значений функции, в том числе тригонометрических функций; Определение четности и нечетности функции, периодичности тригонометрических функций; Понятие функции косинуса, схему исследования функции y = cos (x) и
Слайд 3

После пройденного курса учащиеся должны знать:

Определение области определения и множества значений функции, в том числе тригонометрических функций; Определение четности и нечетности функции, периодичности тригонометрических функций; Понятие функции косинуса, схему исследования функции y = cos (x) и её свойства; Понятие функции синуса, схему исследования функции y = sin (x) и её свойства; Понятие функции тангенса и котангенса, схему исследования функции y = tg (x) и y = ctg (x) и их свойства; Какие функции являются обратными тригонометрическими, иметь представление об их графиках и свойствах.

После изучения практического материала учащиеся должны уметь: Находить область определения и область значений тригонометрических функций; Находить период тригонометрических функций, исследовать их на четность и нечетность; Строить графики функций y = cos (x), y = sin (x), y = tg (x) и y = ctg (x); Н
Слайд 4

После изучения практического материала учащиеся должны уметь:

Находить область определения и область значений тригонометрических функций; Находить период тригонометрических функций, исследовать их на четность и нечетность; Строить графики функций y = cos (x), y = sin (x), y = tg (x) и y = ctg (x); Находить по графикам промежутки возрастания и убывания, промежутки постоянных знаков, наибольшее и наименьшее значения функций; Преобразование графиков: параллельный перенос, симметрия относительно начала и осей координат, растяжение и сжатие вдоль осей координат; Решать задачи с использованием свойств обратных тригонометрических функций; Использовать свойства функции для сравнения и оценки её значений.

§ 38. «Область определения и множество значений тригонометрических функций». Цель: Знать: Определение области определения и множества значений функции, в том числе тригонометрических функций. Уметь: Находить область определения и область значений тригонометрических функций. Урок 1-3. Справочный мате
Слайд 5

§ 38. «Область определения и множество значений тригонометрических функций».

Цель: Знать: Определение области определения и множества значений функции, в том числе тригонометрических функций. Уметь: Находить область определения и область значений тригонометрических функций. Урок 1-3. Справочный материал:

Тренировочный тест. 1. Найдите область определения функции y = √cos (x). а) ; б) ; в) ; г) . 2. Найдите множество значений функции y = 3 - 5∙sin(x). а) [-8; 8]; б) [-2; 8]; в) [-2; 5]; г) [-5; 2]. 3. Чему равно наименьшее значение функции y = sin (x) ∙ cos (x)? а) -1; б) -2; в) -1/2; г) 1. 4. Чему р
Слайд 6

Тренировочный тест

1. Найдите область определения функции y = √cos (x). а) ; б) ; в) ; г) . 2. Найдите множество значений функции y = 3 - 5∙sin(x). а) [-8; 8]; б) [-2; 8]; в) [-2; 5]; г) [-5; 2]. 3. Чему равно наименьшее значение функции y = sin (x) ∙ cos (x)? а) -1; б) -2; в) -1/2; г) 1. 4. Чему равно наибольшее значение функции y = sin2x – cos2x? а) 0; б) 1; в) -1; г) 2.

Тренажер №1. Найти область определения функции:
Слайд 7

Тренажер №1

Найти область определения функции:

Самостоятельная работа. 1. Найдите область определения функции: а) а) б) б) в) в) 2. Найдите множество значений функции: y = (cos x – sin x)2 y = (cos x + sin x)2
Слайд 8

Самостоятельная работа

1. Найдите область определения функции: а) а) б) б) в) в) 2. Найдите множество значений функции: y = (cos x – sin x)2 y = (cos x + sin x)2

§ 39. «Четность, нечетность, периодичность тригонометрических функций». Цель: Знать: Определение четности и нечетности функции, периодичности тригонометрических функций. Уметь: Находить период тригонометрических функций, исследовать их на четность и нечетность. Справочный материал:
Слайд 9

§ 39. «Четность, нечетность, периодичность тригонометрических функций».

Цель: Знать: Определение четности и нечетности функции, периодичности тригонометрических функций. Уметь: Находить период тригонометрических функций, исследовать их на четность и нечетность. Справочный материал:

Тренировочный тест. 1. Какая из функций является четной? А. Б. В. Г. 2. Какая из функций является нечетной? А. Б. В. Г. 3. Какая из функций не является четной, не является нечетной? А. Б. В. Г. 4. Найдите наименьший положительный период функции А. Б. В. Г. 5. Какая из функций имеет период 2П? А. Б.
Слайд 10

Тренировочный тест.

1. Какая из функций является четной? А. Б. В. Г. 2. Какая из функций является нечетной? А. Б. В. Г. 3. Какая из функций не является четной, не является нечетной? А. Б. В. Г. 4. Найдите наименьший положительный период функции А. Б. В. Г. 5. Какая из функций имеет период 2П? А. Б. В. Г.

Диктант. В – 1 1. Функция f(x) периодическая с периодом 8. Запишите вытекающее отсюда равенство. 2. Каков наименьший положительный период функции y=tg x ? 3. Является ли число 3,14 периодом синуса? 4. Каков наименьший положительный период функции 5. Каков наименьший положительный период функции. В –
Слайд 11

Диктант

В – 1 1. Функция f(x) периодическая с периодом 8. Запишите вытекающее отсюда равенство. 2. Каков наименьший положительный период функции y=tg x ? 3. Является ли число 3,14 периодом синуса? 4. Каков наименьший положительный период функции 5. Каков наименьший положительный период функции

В – 2 1. Функция g(x) периодическая с периодом 6. Запишите вытекающее отсюда равенство. 2. Каков наименьший положительный период функции y=cos x ? 3. Является ли число 3,14 периодом котангенса? 4. Каков наименьший положительный период функции 5. Каков наименьший положительный период функции

Домашняя тренировочная работа
Слайд 12

Домашняя тренировочная работа

Тренажер №2
Слайд 13

Тренажер №2

§ 40. «Свойства функции y=cos x и её график». Знать: Понятие функции косинуса, схему исследования функции y=cos x (ее свойства). Уметь: Строить график функции y=cos x, находить по графику промежутки возрастания и убывания, промежутки постоянных знаков, наибольшее и наименьшее значения функции.
Слайд 14

§ 40. «Свойства функции y=cos x и её график».

Знать: Понятие функции косинуса, схему исследования функции y=cos x (ее свойства). Уметь: Строить график функции y=cos x, находить по графику промежутки возрастания и убывания, промежутки постоянных знаков, наибольшее и наименьшее значения функции.

В – 1. 1. Изобразите схематически график функции y=3∙cos(x). Отметьте на графике три точки, для которых у=1,5. Чему равны соответствующие значения х? 2. Запишите наименьший положительный период функции . 3. Запишите промежутки возрастания и убывания функции . 4. Для функции найдите: а) область опред
Слайд 15

В – 1. 1. Изобразите схематически график функции y=3∙cos(x). Отметьте на графике три точки, для которых у=1,5. Чему равны соответствующие значения х? 2. Запишите наименьший положительный период функции . 3. Запишите промежутки возрастания и убывания функции . 4. Для функции найдите: а) область определения; б) множество значений; в) нули функции. В – 2. 1. Изобразите схематически график функции . Отметьте на графике три точки, для которых у=-0,5. Чему равны соответствующие значения х? 2. Запишите наименьший положительный период функции y=0,5∙cos(0,5x). 3. Найдите, в каких точках функция y=3∙cos(x) – 2 достигает своего наибольшего значения? 4. Начертите график функции y=cos(x) на отрезке [-Π; 2,5Π]. Отметьте на этом графике множество точек, для которых выполняются условия: а) cos(x) = 1; б) cos(x) > 0,5. Выпишите соответствующие значения х, при которых выполняется каждое из условий.

§ 41. «Свойства функции y=sin x и её график». Знать: понятие функции синуса, схему исследования функции y=sin x (ее свойства). Уметь: Строить график функции y=sin x, находить по графику промежутки возрастания и убывания, промежутки постоянных знаков, наибольшее и наименьшее значения функции.
Слайд 16

§ 41. «Свойства функции y=sin x и её график».

Знать: понятие функции синуса, схему исследования функции y=sin x (ее свойства). Уметь: Строить график функции y=sin x, находить по графику промежутки возрастания и убывания, промежутки постоянных знаков, наибольшее и наименьшее значения функции.

Проверочная работа. В – 1. 1. Изобразите схематически график функции y = sin(x). Отметьте на графике три точки, для которых у = 1. Чему равны соответствующие значения х? 2. Запишите промежутки возрастания и убывания функции на отрезке В – 2. 1. Запишите наименьший положительный период функции . 2. Н
Слайд 17

Проверочная работа

В – 1. 1. Изобразите схематически график функции y = sin(x). Отметьте на графике три точки, для которых у = 1. Чему равны соответствующие значения х? 2. Запишите промежутки возрастания и убывания функции на отрезке В – 2. 1. Запишите наименьший положительный период функции . 2. Найдите наибольшие и наименьшие значения функции . 3. Сравните числа sin1 и sin3. В – 3. Для функции y = 2∙sin(3x) найдите: а) область определения; б) множество значений; в) нули функции; г) промежутки знакопостоянства; д) наибольшее и наименьшее значения; е) промежутки возрастания и убывания. Постройте этот график. В – 4. Начертите график функции y = sin(x) на отрезке [-Π; 2,5Π]. Отметьте на этом графике множество точек, для которых выполняются условия: а) sin(x) = 1; б) sin(x) = 0,5; в) sin(x) > 0,5. Выпишите соответствующие значения х, при которых выполняется каждое из условий.

Работа в группах по графикам. Каковы значения х, для которых f(x) = 0, f(x)  0? Каковы промежутки возрастания и убывания функции? Укажите значения х, при которых функция имеет максимум или минимум. Обратима ли функция на R?
Слайд 18

Работа в группах по графикам

Каковы значения х, для которых f(x) = 0, f(x) 0? Каковы промежутки возрастания и убывания функции? Укажите значения х, при которых функция имеет максимум или минимум. Обратима ли функция на R?

Тренировочная работа. 1. Для функции y = sin(x) укажите на отрезке [0; 2Π] промежутки, в которых эта функция: а) возрастает; б) убывает; в) положительна; г) отрицательна. 2. При каких значениях х на [0; 2Π) функция принимает наибольшее значение и чему оно равно: а) y = 3 + cos(x); б) y = 2 - sin(x)?
Слайд 19

Тренировочная работа

1. Для функции y = sin(x) укажите на отрезке [0; 2Π] промежутки, в которых эта функция: а) возрастает; б) убывает; в) положительна; г) отрицательна. 2. При каких значениях х на [0; 2Π) функция принимает наибольшее значение и чему оно равно: а) y = 3 + cos(x); б) y = 2 - sin(x)? 3. При каких значениях х на [0; 2Π) функция принимает наименьшее значение и чему оно равно: а) y = 3 + cos(x); б) y = 2 - sin(x)? 4. Существует ли такое значение х из интервала (0; Π), при котором функция y = tg(x) принимает своё наибольшее значение?

В – 1 [ В – 2 ]. Какова область определения [значений] синуса? Какова область значений [определения] тангенса? Является ли функция y = cos(x) [y = tg(x)] нечетной? Каков наименьший положительный период функции y = tg(x) [y = sin(x)] ? Укажите нули функции y = sin(x) [y = tg(x)]. Укажите промежутки,
Слайд 20

В – 1 [ В – 2 ]. Какова область определения [значений] синуса? Какова область значений [определения] тангенса? Является ли функция y = cos(x) [y = tg(x)] нечетной? Каков наименьший положительный период функции y = tg(x) [y = sin(x)] ? Укажите нули функции y = sin(x) [y = tg(x)]. Укажите промежутки, на которых тангенс положителен [косинус отрицателен]. Выяснить возрастает или убывает функция y = cos(x) [y = sin(x)] на промежутке .

Тренажер №3. Постройте график функции:
Слайд 21

Тренажер №3

Постройте график функции:

§ 42. «Свойства функции y = tg (x) и её график». Знать: понятие функции тангенса, схему исследования функции y = tg (x) (ее свойства); понятие функции котангенса, схему исследования функции y = ctg (x) (ее свойства). Уметь: строить графики функций y = tg (x), y = ctg (x), находить по графику промежу
Слайд 22

§ 42. «Свойства функции y = tg (x) и её график».

Знать: понятие функции тангенса, схему исследования функции y = tg (x) (ее свойства); понятие функции котангенса, схему исследования функции y = ctg (x) (ее свойства). Уметь: строить графики функций y = tg (x), y = ctg (x), находить по графику промежутки возрастания и убывания, промежутки знакопостоянства, наибольшие и наименьшие значения функции.

Основные тригонометрические функции Слайд: 23
Слайд 23
Работа в группах
Слайд 24

Работа в группах

§ 43. «Обратные тригонометрические функции». Знать: какие функции являются обратными тригонометрическими, иметь представление об их графиках, свойствах. Уметь: решать задачи с использованием свойств обратных тригонометрических функций.
Слайд 25

§ 43. «Обратные тригонометрические функции».

Знать: какие функции являются обратными тригонометрическими, иметь представление об их графиках, свойствах. Уметь: решать задачи с использованием свойств обратных тригонометрических функций.

Основные тригонометрические функции Слайд: 26
Слайд 26
Основные тригонометрические функции Слайд: 27
Слайд 27
Контрольная работа Тема: «Тригонометрические функции».
Слайд 30

Контрольная работа Тема: «Тригонометрические функции».

Список использованной литературы. Алимов, Ш.А. Алгебра и начала анализа 10 – 11 классы. [Текст]: учебник, Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров. – М.: Просвещение, 2003. Вопросы преподавания алгебры и начала анализа в средней школе. [Текст]: / – М.: Просвещение, 1981. Гусев, В.А. Математика (справ
Слайд 31

Список использованной литературы

Алимов, Ш.А. Алгебра и начала анализа 10 – 11 классы. [Текст]: учебник, Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров. – М.: Просвещение, 2003. Вопросы преподавания алгебры и начала анализа в средней школе. [Текст]: / – М.: Просвещение, 1981. Гусев, В.А. Математика (справочные материалы). [Текст]: / В.А. Гусев, А.Г. Мордкович. – М.: Просвещение. Колмогоров, А.Н. Алгебра и начала анализа 10 – 11 классы. [Текст]: учебник, А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын. М.: Просвещение, 1990. Лукин, Р.Д. Устные упражнения по алгебре и началам анализа. [Текст]: / Р.Д. Лукин, Т.К. Лукина, М.С. Якунина. – М.: Просвещение, 1999. Алтынов, П.И. Алгебра и начала анализа 10 – 11 классы. Тесты. [Текст]: / П.И. Алтынов. – М.: Дрофа, 2003. Аверьянов, Д.И. Математика для школьников и поступающих в ВУЗы. [Текст]: / Д.И. Аверьянов, П.И. Алтынов, И.И. Баврин. – М.: Дрофа, 2000.

Список похожих презентаций

Тригонометрические функции углов в произвольном треугольнике 1-2

Тригонометрические функции углов в произвольном треугольнике 1-2

Продолжите фразу:. Синусом острого угла прямоугольного треугольника называется. А С В. отношение противолежащего катета к гипотенузе. Косинусом острого ...
Тригонометрические функции углового аргумента - алгебра,

Тригонометрические функции углового аргумента - алгебра,

Тригонометрическая функция углового аргумента. Что будем изучать:. Определение. Примеры. Вспомним геометрию. Градусная мера угла. Радианная мера угла. ...
Тригонометрические функции углового аргумента

Тригонометрические функции углового аргумента

Цель урока: отработка навыка нахождения значений тригонометрических функций углового аргумента. Задачи: 1.обобщить и систематизировать учебный материал ...
Тригонометрические функции одного и того же аргумента

Тригонометрические функции одного и того же аргумента

Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, кто желает к ним приобщиться, должен достигнуть этого собственной ...
Тригонометрические функции угла

Тригонометрические функции угла

Что такое косинус угла ? Это число, которое можно определить следующим образом:. cos α ≈ 0,4 1 0 -1. В прямоугольной системе коодинат. проводим полуокружность. ...
Тригонометрические функции

Тригонометрические функции

Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника 1) Синус - отношение противолежащего катета ...
Тригонометрические функции и их свойства

Тригонометрические функции и их свойства

Системы счисления. Память человечества не сохранила, не донесла до нас имя изобретателя колеса или гончарного круга. Это и не удивительно: более 10 ...
Тригонометрические функции

Тригонометрические функции

Содержание. Введение................................................... .......3-5слайд Начало изучения..............................................6-7 ...
Тригонометрические функции

Тригонометрические функции

Числовая окружность. 1. 2. М • В С D 4. А + –. у. На макетах обозначены лишь главные имена точек – числа, принадлежащие но у точек на окружности бесконечное ...
Тригонометрические функции числового аргумента

Тригонометрические функции числового аргумента

- вычисление значений тригонометрических функций; - упрощение тригонометрических выражений. Цель урока. Нужно знать:. - определения тригонометрических ...
Обратные тригонометрические функции

Обратные тригонометрические функции

Историческая справка. Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике ...
Обратные тригонометрические функции

Обратные тригонометрические функции

Содержание: Обратные тригонометрические функции, свойства, графики Историческая справка Преобразование выражений, содержащих обратные тригонометрические ...
Основные тригонометрические формулы

Основные тригонометрические формулы

Основные формулы тригонометрии и их свойства. Дадим определения тригонометрическим функциям синуса, косинуса, тангенса и котангенса. возьмем любой ...
Обратные тригонометрические функции

Обратные тригонометрические функции

15.05.2019. I. Математический диктант. 1)D(y)= 2)E(y)= 3) 4)sin(-x)=-sin x 5)Возрастает на Убывает на 6)Периодичная. I вариант y=sin x II вариант ...
Свойства функции

Свойства функции

. Монотонность. Возрастающая Функцию у = f(х) называют возрастающей на множестве Х, если для любых двух точек х1 и х2 множества Х, таких, что х1 < ...
Производная функции

Производная функции

Задание № 1. 1. На рисунке изображен график функции y=f(x) и касательная к нему в точке с абсциссой х0 Найдите значение производной в точке х0 1) ...
Свойства и график логарифмической функции

Свойства и график логарифмической функции

- 5 - 4 - 3 - 2 -1 0 1 2 3 4 5 4 3 2 1 -1 -2 -3 -4. D(f)= E(f)= y=0 при х= y>0 при х y. Логарифмическая функция, её свойства и график. Опр. Логарифмической ...
Предел функции в точке

Предел функции в точке

Одна и та же кривая, три разные функции. Отличие – поведение в точке х = а. f(a) – не существует, т.к. в точке х =а функция у = f(х) не определена. ...
Применение производной функции

Применение производной функции

с и л а. в у м е. I вариант II вариант Буква С Буква В. Буква И Буква У. Буква Л Буква М. Буква А Буква Е 7. Сложилась фраза. ...
Показательная и логарифмическая функции

Показательная и логарифмическая функции

Цели урока. Систематизировать знания и умения, полученные в ходе изучения темы: «Показательная и логарифмическая функции. Решение показательных уравнений ...

Конспекты

Тригонометрические функции острого угла

Тригонометрические функции острого угла

МКОУ СОШ с.п.Кара-Суу Черекского района КБР. Айшаева Фердаус Сулеймановна. . "Тригонометрические функции острого угла" Геометрия 8 класс. ...
Функции. Тригонометрические функции

Функции. Тригонометрические функции

Учитель математики ГБОУ СОШ № 230 с углубленным изучением химии и биологии. Ваганова Г. В. Тема. :. . « Функции. Тригонометрические ...
Обратные тригонометрические функции

Обратные тригонометрические функции

Разработка урока по теме: «Обратные тригонометрические функции». 10 класс. Тип урока. : изучение нового материала. Цели урока. :. обучающие. ...
Тригонометрические функции числового аргумента

Тригонометрические функции числового аргумента

Название работы: Урок с использованием готовых электронных образовательных ресурсов. . Автор (авторы):. Чуракова Нина Анатольевна(. chura. -. nina. ...
Тригонометрические функции

Тригонометрические функции

Урок по теме:. «. Тригонометрические функции. ». 10 класс. Составитель - учитель математики Апарина Е.Г. с. Майкопское. ...
Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции

Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции

Конспект урока по алгебре и началам анализа по теме. «Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции». . ...
Простейшие тригонометрические уравнения

Простейшие тригонометрические уравнения

Разработка урока в 10 классе. Тема урока:. Простейшие тригонометрические уравнения. Цель урока:. Образовательные:. . . - актуализировать ...
Свойства линейной функции

Свойства линейной функции

Государственное бюджетное образовательное учреждение. средняя общеобразовательная школа №200 с углубленным изучением финского языка. Красносельского ...
Применение производной к исследованию функции

Применение производной к исследованию функции

МОУ Греково-Степановская СОШ. . Чертковского района Ростовской области. Учитель математики и информатики. Киселева Лариса Анатольевна. Урок алгебры ...
Производная показательной и логарифмической функции

Производная показательной и логарифмической функции

КГУ «Средняя школа №7 города Зыряновска». «Производная показательной и логарифмической функции». Учитель: ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:4 октября 2018
Категория:Математика
Содержит:31 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации