- Основные тригонометрические формулы

Презентация "Основные тригонометрические формулы" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9

Презентацию на тему "Основные тригонометрические формулы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 9 слайд(ов).

Слайды презентации

Основные тригонометрические формулы. Подготовила ученица 10 класса: Панькина Диана Учитель: Малянов Иван Иванович Сосновская СОШ 2012 г.
Слайд 1

Основные тригонометрические формулы

Подготовила ученица 10 класса: Панькина Диана Учитель: Малянов Иван Иванович Сосновская СОШ 2012 г.

Основные формулы тригонометрии и их свойства. Дадим определения тригонометрическим функциям синуса, косинуса, тангенса и котангенса. возьмем любой прямоугольный треугольник. Из курса геометрии мы знаем, что у него есть два катета и гипотенуза, причем угол между двумя катетами прямой - то есть равен
Слайд 2

Основные формулы тригонометрии и их свойства

Дадим определения тригонометрическим функциям синуса, косинуса, тангенса и котангенса. возьмем любой прямоугольный треугольник. Из курса геометрии мы знаем, что у него есть два катета и гипотенуза, причем угол между двумя катетами прямой - то есть равен 90o, или π/2 радиан.

Рассмотрим угол α, который образован одним из катетов и гипотенузой.

Синусом угла α называется отношение длин противолежащего катета к гипотенузе. Косинусом угла α называется отношение длин прилежащего катета к гипотенузе. Тангенсом угла α называется отношение длин противолежащего катета к прилежащему. Котангенсом угла α называется отношение длин прилежащего катета к противолежащему.

Из определений тригонометрических функций сразу же следуют тригонометрические тождества:

Связь между тригонометрическими функциями одного и того же аргумента
Слайд 4

Связь между тригонометрическими функциями одного и того же аргумента

Тригонометрические функции двойного и половинного аргумента
Слайд 5

Тригонометрические функции двойного и половинного аргумента

Формулы, что выражают тригонометрические функции через тангенс половинного угла
Слайд 6

Формулы, что выражают тригонометрические функции через тангенс половинного угла

Тригонометрические функции суммы и разности углов
Слайд 7

Тригонометрические функции суммы и разности углов

Значения синуса, косинуса, тангенса, котангенса. sin(α)=OA cos(α)=OC tg(α)=DE ctg(α)=MK R=OB=1
Слайд 8

Значения синуса, косинуса, тангенса, котангенса

sin(α)=OA cos(α)=OC tg(α)=DE ctg(α)=MK R=OB=1

Пример решения тригонометрического уравнения при помощи тригонометрической формулы. Пример 1. sin3x = sinx. Решение. Перенесем sinx в левую часть уравнения и полученную разность преобразуем в произведение. sin3x - sinx == 0; 2sinx · cos2x = 0. Из условия равенства нулю произведения получим два прост
Слайд 9

Пример решения тригонометрического уравнения при помощи тригонометрической формулы

Пример 1. sin3x = sinx.

Решение. Перенесем sinx в левую часть уравнения и полученную разность преобразуем в произведение. sin3x - sinx == 0; 2sinx · cos2x = 0. Из условия равенства нулю произведения получим два простейших уравнения.

sinx = 0 или cos2x = 0.

x1 = p n, n Î Z, x2 = p /4 + p n/2, n Î Z

Ответ: x1 = p n, n Î Z, x2 = p /4 + p n/2, n Î Z.

Список похожих презентаций

Основные формулы тригонометрии

Основные формулы тригонометрии

Содержание. Из истории… 2) Основные тригонометрические формулы а) основные тригонометрические тождества б) формулы сложения в) формулы суммы и разности ...
Тригонометрические формулы

Тригонометрические формулы

Цель урока. Повторить и систематизировать изученный материал Подготовиться к контрольной работе. Задачи урока. Повторить определение синуса, косинуса, ...
Основные формулы тригонометрии

Основные формулы тригонометрии

Могут ли одновременно выполняться равенства? Правильный ответ: Да 17.06.2019. . Нет. Вычислите:. учитель математики Кустова М.О. . - 0,6. . . . . ...
Тригонометрические формулы

Тригонометрические формулы

Математический турнир. Тур I. В какой четверти лежит угол α, если выполняется условие Sinα>0, cosα. Определите знак значения функции cos150˚ ( « - ...
Основные тригонометрические функции

Основные тригонометрические функции

Пояснительная записка. В результате изучения курса математики учащиеся должны понимать, что функция – математическая модель, позволяющая описывать ...
Тригонометрические формулы

Тригонометрические формулы

Рассмотрим следующие вопросы:. радианная мера угла; поворот точки вокруг начала координат; определение синуса, косинуса и тангенса произвольного угла; ...
Основные аксиомы стереометрии

Основные аксиомы стереометрии

Скажи мне – и я забуду. Покажи мне – и я запомню. Вовлеки меня – и я научусь. Древняя китайская пословица. Четыре равносторонних треугольника. Геометрия ...
Основные фигуры

Основные фигуры

А В С Е. Точки обозначаются прописными латинскими буквами А, В, С, D, Е, К,…. Планеты и звезды в масштабе вселенной. Птицы и самолеты в небе. Атомы ...
Основные теоремы теории вероятностей

Основные теоремы теории вероятностей

Литература и интернет - ресурсы. Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей: учебное пособие. М.: Академия, 2003. – 448 ...
Основные свойства неопределенного интеграла

Основные свойства неопределенного интеграла

Доказательство:. 2. Дифференциал от неопределенного интеграла равен подынтегральному выражению. . 3. Неопределенный интеграл от дифференциала некоторой ...
Граф и его элементы. Основные определения

Граф и его элементы. Основные определения

Переход по слайдам осуществляется только по нажатию левой кнопки мыши клик мыши!!! Если есть мигающая стрелка, значит нужно нажатие левой кнопки мыши ...
Интерполяционные формулы

Интерполяционные формулы

Пусть точка х лежит в окрестности середины интервала содержащего 2n+1 равноотстоящих с шагом h узла интерполирования. Для интерполирования функции ...
Решение задач с использованием формулы полной вероятности и формулы Бейеса

Решение задач с использованием формулы полной вероятности и формулы Бейеса

Формула полной вероятности. Формула Бейеса P(Hi|A) = =. Задачи. 1. В сборочный цех поступили детали с трех станков. На первом станке изготовлено 51% ...
Однородные тригонометрические уравнения

Однородные тригонометрические уравнения

Кроссорд. 1.    Значение переменной, обращающее уравнение в верное равенство 2.    Единица измерения углов 3.    Числовой множитель в произведении 4.    Раздел ...
Определение запыленности воздуха по листьям деревьев с использованием формулы Пика

Определение запыленности воздуха по листьям деревьев с использованием формулы Пика

Введение. В последние годы, наряду с изменениями климата, происходит значительное увеличение антропогенной нагрузки на природные и урбанизированные ...
Обратные тригонометрические функции

Обратные тригонометрические функции

Содержание: Обратные тригонометрические функции, свойства, графики Историческая справка Преобразование выражений, содержащих обратные тригонометрические ...
Обратные тригонометрические функции

Обратные тригонометрические функции

Историческая справка. Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике ...
Обратные тригонометрические функции

Обратные тригонометрические функции

15.05.2019. I. Математический диктант. 1)D(y)= 2)E(y)= 3) 4)sin(-x)=-sin x 5)Возрастает на Убывает на 6)Периодичная. I вариант y=sin x II вариант ...
Логарифм. Основные понятия

Логарифм. Основные понятия

. . . . Десятичные логарифмы. Логарифмы по основанию 10 (обозначение: lg a) до изобретения калькуляторов широко применялись для вычислений. Неравномерная ...
Квадратные уравнения. Основные свойства

Квадратные уравнения. Основные свойства

Из данных уравнений выбрать квадратные. А) х2 – 1 = 0; Б) х3 + 2х – 1 = 0; В) - 1 = 0;. Г) 3х = 0; Д) 2х2 – 5х + 6 = 0; Е) 7х – х2 + 3 = 0. ах2 + ...

Конспекты

Тригонометрические формулы

Тригонометрические формулы

Тема: Тригонометрические формулы (25 часов). Урок 6 – 7: Зависимость между синусом, косинусом и тангенсом одного и того же угла. Цель:. изучить ...
Тригонометрические формулы

Тригонометрические формулы

Алгебра 10 класс. Разработал:учитель математики первой категории. МАОУ УЛу-Юльской СОШ. Олей В.И. Тема урока:Тригонометрические формулы. Вид ...
Тригонометрические формулы

Тригонометрические формулы

Ельцова Н.Г., учитель МОУ «Гимназия № 11». Урок по теме: «Тригонометрические формулы ». . . Класс:. 10 гуманитарный. Цель:. 1.Ввести понятие ...
У математики существует свой язык – это формулы

У математики существует свой язык – это формулы

. « У математики существует свой язык – это формулы. ». С. Ковалевская. ФОРМУЛЫ . СОКРАЩЕННОГО УМНОЖЕНИЯ. 7 класс. Цели:. 1. Обобщить ...
Решение квадратных уравнений с помощью формулы

Решение квадратных уравнений с помощью формулы

Решение квадратных уравнений с помощью формулы. Цели урока:. Образовательные - систематизировать знания, выработать умение выбирать рациональный ...
Простейшие тригонометрические уравнения

Простейшие тригонометрические уравнения

Разработка урока в 10 классе. Тема урока:. Простейшие тригонометрические уравнения. Цель урока:. Образовательные:. . . - актуализировать ...
Простейшие тригонометрические уравнения и их решения

Простейшие тригонометрические уравнения и их решения

Алгебра 10 класс. Урок. №32. Дата. 20.11.2014. Тема:. Простейшие тригонометрические уравнения и их решения. Цели и задачи:. Знать формулы по ...
Основные методы решения тригонометрических уравнений

Основные методы решения тригонометрических уравнений

. МАТЕМАТИКА 11 класс. Тема: Основные методы решения тригонометрических уравнений. Цели урока:. Обобщить и систематизировать полученные знания ...
Основные приемы решения задач на сплавы, смеси, растворы

Основные приемы решения задач на сплавы, смеси, растворы

Афанасьева Елена Викторовна. МБОУ СОШ№12, г.Ноябрьск. учитель математики. . Тема:. . «Основные приемы решения задач на сплавы, смеси, растворы». ...
Однородные тригонометрические уравнения

Однородные тригонометрические уравнения

«Однородные тригонометрические уравнения». (алгебра и начала анализа, 10 класс). Пронина Светлана Михайловна. учитель математики. ГБОУ СОШ ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:ученица: Панькина Диана; учитель: Малянов Иван Иванович
Содержит:9 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации