- Граф и его элементы. Основные определения

Презентация "Граф и его элементы. Основные определения" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Граф и его элементы. Основные определения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

Граф и его элементы. Основные определения
Слайд 1

Граф и его элементы

Основные определения

Переход по слайдам осуществляется только по нажатию левой кнопки мыши клик мыши!!! Если есть мигающая стрелка, значит нужно нажатие левой кнопки мыши в любом месте слайд для продолжения презентации!!!! После прочтения удалить слайд!
Слайд 2

Переход по слайдам осуществляется только по нажатию левой кнопки мыши клик мыши!!! Если есть мигающая стрелка, значит нужно нажатие левой кнопки мыши в любом месте слайд для продолжения презентации!!!! После прочтения удалить слайд!

ГРАФОМ G = (V, X) НАЗЫВАЕТСЯ ПАРА ДВУХ КОНЕЧНЫХ МНОЖЕСТВ: МНОЖЕСТВО ТОЧЕК И МНОЖЕСТВО ЛИНИЙ, СОЕДИНЯЮЩИХ НЕКОТОРЫЕ ПАРЫ ТОЧЕК. Впервые понятие «граф» ввел в 1936 г. венгерский математик Денни Кёниг. но первая работа по теории графов принадлежала перу великого Леонарда Эйлера и была написана еще в 17
Слайд 3

ГРАФОМ G = (V, X) НАЗЫВАЕТСЯ ПАРА ДВУХ КОНЕЧНЫХ МНОЖЕСТВ: МНОЖЕСТВО ТОЧЕК И МНОЖЕСТВО ЛИНИЙ, СОЕДИНЯЮЩИХ НЕКОТОРЫЕ ПАРЫ ТОЧЕК.

Впервые понятие «граф» ввел в 1936 г. венгерский математик Денни Кёниг. но первая работа по теории графов принадлежала перу великого Леонарда Эйлера и была написана еще в 1736 г.

ТОЧКИ НАЗЫВАЮТСЯ ВЕРШИНАМИ, ИЛИ УЗЛАМИ, ГРАФА, ЛИНИИ – РЕБРАМИ ГРАФА. ПРИМЕРЫ ГРАФОВ
Слайд 4

ТОЧКИ НАЗЫВАЮТСЯ ВЕРШИНАМИ, ИЛИ УЗЛАМИ, ГРАФА, ЛИНИИ – РЕБРАМИ ГРАФА.

ПРИМЕРЫ ГРАФОВ

ЕСЛИ РЕБРО ГРАФА СОЕДИНЯЕТ ДВЕ ЕГО ВЕРШИНЫ, ТО ГОВОРЯТ, ЧТО ЭТО РЕБРО ИМ ИНЦИДЕНТНО. ДВЕ ВЕРШИНЫ ГРАФА НАЗЫВАЮТСЯ СМЕЖНЫМИ, ЕСЛИ СУЩЕСТВУЕТ ИНЦИДЕНТНОЕ ИМ РЕБРО. НА РИСУНКЕ СМЕЖНЫМИ ЯВЛЯЮТСЯ ВЕРШИНЫ A и B, A и C; СМЕЖНЫМИ ЯВЛЯЮТСЯ РЕБРА c и d, a и b. ЕСЛИ ГРАФ ИМЕЕТ РЕБРО, У КОТОРОГО НАЧАЛО И КОНЕЦ
Слайд 5

ЕСЛИ РЕБРО ГРАФА СОЕДИНЯЕТ ДВЕ ЕГО ВЕРШИНЫ, ТО ГОВОРЯТ, ЧТО ЭТО РЕБРО ИМ ИНЦИДЕНТНО. ДВЕ ВЕРШИНЫ ГРАФА НАЗЫВАЮТСЯ СМЕЖНЫМИ, ЕСЛИ СУЩЕСТВУЕТ ИНЦИДЕНТНОЕ ИМ РЕБРО.

НА РИСУНКЕ СМЕЖНЫМИ ЯВЛЯЮТСЯ ВЕРШИНЫ A и B, A и C; СМЕЖНЫМИ ЯВЛЯЮТСЯ РЕБРА c и d, a и b.

ЕСЛИ ГРАФ ИМЕЕТ РЕБРО, У КОТОРОГО НАЧАЛО И КОНЕЦ СОВПАДАЮТ, ТО ЭТО РЕБРО НАЗЫВАЕТСЯ ПЕТЛЕЙ (у графа петля – q(C,C)).

ДВА РЕБРА НАЗЫВАЮТСЯ СМЕЖНЫМИ, ЕСЛИ ОНИ ИМЕЮТ ОБЩУЮ ВЕРШИНУ.

КРАТНЫЕ РЕБРА. ЧИСЛО РЕБЕР, ИНЦИДЕНТНЫХ ВЕРШИНЕ A , НАЗЫВАЕТСЯ СТЕПЕНЬЮ ЭТОЙ ВЕРШИНЫ И ОБОЗНАЧАЕТСЯ deg(A). deg(A)= 3; deg(B) = 3; deg(C) = 4; deg(D) = 2; deg(E) = 0. ЕСЛИ ВЕРШИНЕ ИНЦИДЕНТНА ПЕТЛЯ, ОНА ДАЕТ ВКЛАД В СТЕПЕНЬ, РАВНЫЙ ДВУМ, ТАК КАК ОБА КОНЦА ПРИХОДЯТ В ЭТУ ВЕРШИНУ.
Слайд 6

КРАТНЫЕ РЕБРА

ЧИСЛО РЕБЕР, ИНЦИДЕНТНЫХ ВЕРШИНЕ A , НАЗЫВАЕТСЯ СТЕПЕНЬЮ ЭТОЙ ВЕРШИНЫ И ОБОЗНАЧАЕТСЯ deg(A).

deg(A)= 3; deg(B) = 3; deg(C) = 4; deg(D) = 2; deg(E) = 0.

ЕСЛИ ВЕРШИНЕ ИНЦИДЕНТНА ПЕТЛЯ, ОНА ДАЕТ ВКЛАД В СТЕПЕНЬ, РАВНЫЙ ДВУМ, ТАК КАК ОБА КОНЦА ПРИХОДЯТ В ЭТУ ВЕРШИНУ.

deg(E) = 0. E – ИЗОЛИРОВАННАЯ ВЕРШИНА. deg(G) = 1 deg(H) = 1 deg(E) = 1 deg(B) = 1 deg(A) = 1. G, H, E, B, A - ВИСЯЧИЕ ВЕРШИНЫ
Слайд 7

deg(E) = 0

E – ИЗОЛИРОВАННАЯ ВЕРШИНА

deg(G) = 1 deg(H) = 1 deg(E) = 1 deg(B) = 1 deg(A) = 1

G, H, E, B, A - ВИСЯЧИЕ ВЕРШИНЫ

ТЕОРЕМА. В ГРАФЕ G(V, X) СУММА СТЕПЕНЕЙ ВСЕХ ЕГО ВЕРШИН – ЧИСЛО ЧЕТНОЕ, РАВНОЕ УДВОЕННОМУ ЧИСЛУ РЕБЕР ГРАФА: ЧИСЛО НЕЧЕТНЫХ ВЕРШИН ЛЮБОГО ГРАФА – ЧЕТНО. СЛЕДСТВИЕ. НЕВОЗМОЖНО НАЧЕРТИТЬ ГРАФ С НЕЧЕТНЫМ ЧИСЛОМ НЕЧЕТНЫХ ВЕРШИН. ВЕРШИНА НАЗЫВАЕТСЯ ЧЕТНОЙ (НЕЧЕТНОЙ), ЕСЛИ ЕЕ СТЕПЕНЬ – ЧЕТНОЕ(НЕЧЕТНОЕ) ЧИ
Слайд 8

ТЕОРЕМА

В ГРАФЕ G(V, X) СУММА СТЕПЕНЕЙ ВСЕХ ЕГО ВЕРШИН – ЧИСЛО ЧЕТНОЕ, РАВНОЕ УДВОЕННОМУ ЧИСЛУ РЕБЕР ГРАФА:

ЧИСЛО НЕЧЕТНЫХ ВЕРШИН ЛЮБОГО ГРАФА – ЧЕТНО.

СЛЕДСТВИЕ

НЕВОЗМОЖНО НАЧЕРТИТЬ ГРАФ С НЕЧЕТНЫМ ЧИСЛОМ НЕЧЕТНЫХ ВЕРШИН.

ВЕРШИНА НАЗЫВАЕТСЯ ЧЕТНОЙ (НЕЧЕТНОЙ), ЕСЛИ ЕЕ СТЕПЕНЬ – ЧЕТНОЕ(НЕЧЕТНОЕ) ЧИСЛО.

ГРАФ НАЗЫВАЕТСЯ ПОЛНЫМ, ЕСЛИ ЛЮБЫЕ ДВЕ ЕГО РАЗЛИЧНЫЕ ВЕРШИНЫ СОЕДИНЕНЫ ОДНИМ И ТОЛЬКО ОДНИМ РЕБРОМ. ДОПОЛНЕНИЕМ ГРАФА НАЗЫВАЕТСЯ ГРАФ С ТЕМИ ЖЕ ВЕРШИНАМИ И ИМЕЮЩИЙ ТЕ И ТОЛЬКО ТЕ РЕБРА, КОТОРЫЕ НЕОБХОДИМО ДОБАВИТЬ К ИСХОДНОМУ ГРАФУ, ЧТОБЫ ОН СТАЛ ПОЛНЫМ. ДОПОЛНЕНИЕ
Слайд 9

ГРАФ НАЗЫВАЕТСЯ ПОЛНЫМ, ЕСЛИ ЛЮБЫЕ ДВЕ ЕГО РАЗЛИЧНЫЕ ВЕРШИНЫ СОЕДИНЕНЫ ОДНИМ И ТОЛЬКО ОДНИМ РЕБРОМ.

ДОПОЛНЕНИЕМ ГРАФА НАЗЫВАЕТСЯ ГРАФ С ТЕМИ ЖЕ ВЕРШИНАМИ И ИМЕЮЩИЙ ТЕ И ТОЛЬКО ТЕ РЕБРА, КОТОРЫЕ НЕОБХОДИМО ДОБАВИТЬ К ИСХОДНОМУ ГРАФУ, ЧТОБЫ ОН СТАЛ ПОЛНЫМ.

ДОПОЛНЕНИЕ

ДУГИ НАЧАЛО ДУГИ (A,B) КОНЕЦ ДУГИ (A,B). СТЕПЕНЬЮ ВХОДА (ВЫХОДА) ВЕРШИНЫ ОРГРАФА НАЗЫВАЕТСЯ ЧИСЛО РЕБЕР, ДЛЯ КОТОРЫХ ЭТА ВЕРШИНА ЯВЛЯЕТСЯ КОНЦОМ (НАЧАЛОМ). СТЕПЕНИ ВХОДА ВЕРШИН ГРАФА (см. рис.): СТЕПЕНИ ВЫХОДА ВЕРШИН: ОРГРАФ. ОРИЕНТИРОВАННЫЙ ГРАФ (ОРГРАФ) — ГРАФ, РЁБРАМ КОТОРОГО ПРИСВОЕНО НАПРАВЛЕНИ
Слайд 10

ДУГИ НАЧАЛО ДУГИ (A,B) КОНЕЦ ДУГИ (A,B)

СТЕПЕНЬЮ ВХОДА (ВЫХОДА) ВЕРШИНЫ ОРГРАФА НАЗЫВАЕТСЯ ЧИСЛО РЕБЕР, ДЛЯ КОТОРЫХ ЭТА ВЕРШИНА ЯВЛЯЕТСЯ КОНЦОМ (НАЧАЛОМ).

СТЕПЕНИ ВХОДА ВЕРШИН ГРАФА (см. рис.):

СТЕПЕНИ ВЫХОДА ВЕРШИН:

ОРГРАФ

ОРИЕНТИРОВАННЫЙ ГРАФ (ОРГРАФ) — ГРАФ, РЁБРАМ КОТОРОГО ПРИСВОЕНО НАПРАВЛЕНИЕ. НАПРАВЛЕННЫЕ РЁБРА ИМЕНУЮТСЯ ДУГАМИ.

Последовательность ребер неориентированного графа, в которой вторая вершина предыдущего ребра совпадает с первой вершиной следующего, называется маршрутом. Число ребер маршрута называется длиной маршрута. HCDFD – МАРШРУТ ДЛИНОЙ 4.
Слайд 11

Последовательность ребер неориентированного графа, в которой вторая вершина предыдущего ребра совпадает с первой вершиной следующего, называется маршрутом. Число ребер маршрута называется длиной маршрута.

HCDFD – МАРШРУТ ДЛИНОЙ 4.

Если начальная вершина маршрута совпадает с конечной, то такой маршрут называется замкнутым или циклом. Если ребро встретилось только один раз, то маршрут называется цепью. (t, s, p, r) – 4-ЦИКЛ (t, s, u, r, t, s, p, r) – 8-ЦИКЛ петля (q) – 1-ЦИКЛ. (t, s, p) – 3-ЦЕПЬ
Слайд 12

Если начальная вершина маршрута совпадает с конечной, то такой маршрут называется замкнутым или циклом. Если ребро встретилось только один раз, то маршрут называется цепью.

(t, s, p, r) – 4-ЦИКЛ (t, s, u, r, t, s, p, r) – 8-ЦИКЛ петля (q) – 1-ЦИКЛ

(t, s, p) – 3-ЦЕПЬ

совпадает с началом следующего и все ребра единственны. ЦИКЛ В ОРГРАФЕ – ПУТЬ, У КОТОРОГО СОВПАДАЮТ НАЧАЛО И КОНЕЦ. (u, s, r, t) – 4-путь (r, u) – 2-путь (s, r, t) и (u, s, r) – 3-циклы. Путь – упорядоченная последовательность ребер ориентированного графа, в которой конец предыдущего ребра
Слайд 13

совпадает с началом следующего и все ребра единственны.

ЦИКЛ В ОРГРАФЕ – ПУТЬ, У КОТОРОГО СОВПАДАЮТ НАЧАЛО И КОНЕЦ.

(u, s, r, t) – 4-путь (r, u) – 2-путь (s, r, t) и (u, s, r) – 3-циклы

Путь – упорядоченная последовательность ребер ориентированного графа, в которой конец предыдущего ребра

ЦЕПЬ, ПУТЬ И ЦИКЛ В ГРАФЕ НАЗЫВАЮТСЯ ПРОСТЫМИ, ЕСЛИ ОНИ ПРОХОДЯТ ЧЕРЕЗ ЛЮБУЮ ИЗ ВЕРШИН НЕ БОЛЕЕ ОДНОГО РАЗА. НЕОРИЕНТИРОВАННЫЙ ГРАФ НАЗЫВАЕТСЯ СВЯЗНЫМ, ЕСЛИ МЕЖДУ ЛЮБЫМИ ДВУМЯ ЕГО ВЕРШИНАМИ ЕСТЬ МАРШРУТ. ДЛЯ ТОГО, ЧТОБЫ СВЯЗНЫЙ ГРАФ ЯВЛЯЛСЯ ПРОСТЫМ ЦИКЛОМ, НЕОБХОДИМО И ДОСТАТОЧНО, ЧТОБЫ КАЖДАЯ ЕГО В
Слайд 14

ЦЕПЬ, ПУТЬ И ЦИКЛ В ГРАФЕ НАЗЫВАЮТСЯ ПРОСТЫМИ, ЕСЛИ ОНИ ПРОХОДЯТ ЧЕРЕЗ ЛЮБУЮ ИЗ ВЕРШИН НЕ БОЛЕЕ ОДНОГО РАЗА. НЕОРИЕНТИРОВАННЫЙ ГРАФ НАЗЫВАЕТСЯ СВЯЗНЫМ, ЕСЛИ МЕЖДУ ЛЮБЫМИ ДВУМЯ ЕГО ВЕРШИНАМИ ЕСТЬ МАРШРУТ.

ДЛЯ ТОГО, ЧТОБЫ СВЯЗНЫЙ ГРАФ ЯВЛЯЛСЯ ПРОСТЫМ ЦИКЛОМ, НЕОБХОДИМО И ДОСТАТОЧНО, ЧТОБЫ КАЖДАЯ ЕГО ВЕРШИНА ИМЕЛА СТЕПЕНЬ, РАВНУЮ 2.

ГРАФ G НАЗЫВАЕТСЯ ПЛАНАРНЫМ (ПЛОСКИМ), ЕСЛИ СУЩЕСТВУЕТ ТАКОЙ ГРАФ G' , В ИЗОБРАЖЕНИИ КОТОРОГО НА ПЛОСКОСТИ РЕБРА ПЕРЕСЕКАЮТСЯ ТОЛЬКО В ВЕРШИНАХ. ПЛАНАРНЫЕ ГРАФЫ
Слайд 15

ГРАФ G НАЗЫВАЕТСЯ ПЛАНАРНЫМ (ПЛОСКИМ), ЕСЛИ СУЩЕСТВУЕТ ТАКОЙ ГРАФ G' , В ИЗОБРАЖЕНИИ КОТОРОГО НА ПЛОСКОСТИ РЕБРА ПЕРЕСЕКАЮТСЯ ТОЛЬКО В ВЕРШИНАХ.

ПЛАНАРНЫЕ ГРАФЫ

ЭЙЛЕРОВЫМ ПУТЕМ (ЦИКЛОМ) ГРАФА НАЗЫВАЕТСЯ ПУТЬ (ЦИКЛ), КОТОРЫЙ СОДЕРЖИТ ВСЕ РЕБРА ГРАФА ТОЛЬКО ОДИН РАЗ. ГРАФ, ОБЛАДАЮЩИЙ ЭЙЛЕРОВЫМ ЦИКЛОМ, НАЗЫВАЕТСЯ ЭЙЛЕРОВЫМ. ГРАФ ЯВЛЯЕТСЯ ЭЙЛЕРОВЫМ ТОГДА И ТОЛЬКО ТОГДА, КОГДА ОН – СВЯЗНЫЙ ГРАФ, ИМЕЮЩИЙ ВСЕ ЧЕТНЫЕ ВЕРШИНЫ.
Слайд 16

ЭЙЛЕРОВЫМ ПУТЕМ (ЦИКЛОМ) ГРАФА НАЗЫВАЕТСЯ ПУТЬ (ЦИКЛ), КОТОРЫЙ СОДЕРЖИТ ВСЕ РЕБРА ГРАФА ТОЛЬКО ОДИН РАЗ. ГРАФ, ОБЛАДАЮЩИЙ ЭЙЛЕРОВЫМ ЦИКЛОМ, НАЗЫВАЕТСЯ ЭЙЛЕРОВЫМ.

ГРАФ ЯВЛЯЕТСЯ ЭЙЛЕРОВЫМ ТОГДА И ТОЛЬКО ТОГДА, КОГДА ОН – СВЯЗНЫЙ ГРАФ, ИМЕЮЩИЙ ВСЕ ЧЕТНЫЕ ВЕРШИНЫ.

ГАМИЛЬТОНОВЫМ ПУТЕМ(ЦИКЛОМ) ГРАФА НАЗЫВАЕТСЯ ПУТЬ(ЦИКЛ), ПРОХОДЯЩИЙ ЧЕРЕЗ КАЖДУЮ ЕГО ВЕРШИНУ ТОЛЬКО ОДИН РАЗ. ГРАФ, СОДЕРЖАЩИЙ ГАМИЛЬТОНОВ ЦИКЛ, НАЗЫВАЕТСЯ ГАМИЛЬТОНОВЫМ. (C, D, A, B, E) – гамильтонов путь
Слайд 17

ГАМИЛЬТОНОВЫМ ПУТЕМ(ЦИКЛОМ) ГРАФА НАЗЫВАЕТСЯ ПУТЬ(ЦИКЛ), ПРОХОДЯЩИЙ ЧЕРЕЗ КАЖДУЮ ЕГО ВЕРШИНУ ТОЛЬКО ОДИН РАЗ. ГРАФ, СОДЕРЖАЩИЙ ГАМИЛЬТОНОВ ЦИКЛ, НАЗЫВАЕТСЯ ГАМИЛЬТОНОВЫМ.

(C, D, A, B, E) – гамильтонов путь

МАТРИЦЕЙ ИНЦИДЕНТНОСТИ ГРАФА G НАЗЫВАЮТ ТАБЛИЦУ B, СОСТОЯЩУЮ ИЗ n СТРОК(ВЕРШИНЫ) И m СТОЛБЦОВ(РЕБРА), В КОТОРОЙ: bij = 1, ЕСЛИ ВЕРШИНА Vj ИНЦИДЕНТНА РЕБРУ Xj bij = 0, ЕСЛИ ВЕРШИНА Vi ИНЦИДЕНТНА РЕБРУ Xi. ДЛЯ ОРИЕНТИРОВАННОГО ГРАФА: ДЛЯ НЕОРИЕНТИРОВАННОГО ГРАФА: bij = 1, ЕСЛИ ВЕРШИНА Vi ЯВЛЯЕТСЯ НАЧА
Слайд 18

МАТРИЦЕЙ ИНЦИДЕНТНОСТИ ГРАФА G НАЗЫВАЮТ ТАБЛИЦУ B, СОСТОЯЩУЮ ИЗ n СТРОК(ВЕРШИНЫ) И m СТОЛБЦОВ(РЕБРА), В КОТОРОЙ:

bij = 1, ЕСЛИ ВЕРШИНА Vj ИНЦИДЕНТНА РЕБРУ Xj bij = 0, ЕСЛИ ВЕРШИНА Vi ИНЦИДЕНТНА РЕБРУ Xi

ДЛЯ ОРИЕНТИРОВАННОГО ГРАФА:

ДЛЯ НЕОРИЕНТИРОВАННОГО ГРАФА:

bij = 1, ЕСЛИ ВЕРШИНА Vi ЯВЛЯЕТСЯ НАЧАЛОМ ДУГИ Xj bij = 1, ЕСЛИ ВЕРШИНА Vj НЕ ИНЦИДЕНТНА ДУГЕ Xj bij = -1, ЕСЛИ ВЕРШИНА Vi ЯВЛЯЕТСЯ КОНЦОМ ДУГИ Xj

МАТРИЦЕЙ СМЕЖНОСТИ ГРАФА G(V,X) БЕЗ КРАТНЫХ РЕБЕР НАЗЫВАЮТ КВАДРАТНУЮ МАТРИЦУ A ПОРЯДКА n, В КОТОРОЙ: aij = 1, ЕСЛИ (Vi, Vj)  X aij = 0, ЕСЛИ (Vi, Vj)  X
Слайд 19

МАТРИЦЕЙ СМЕЖНОСТИ ГРАФА G(V,X) БЕЗ КРАТНЫХ РЕБЕР НАЗЫВАЮТ КВАДРАТНУЮ МАТРИЦУ A ПОРЯДКА n, В КОТОРОЙ:

aij = 1, ЕСЛИ (Vi, Vj)  X aij = 0, ЕСЛИ (Vi, Vj)  X

СЛЕДУЮЩИЙ ОРГРАФ ЗАДАЕТСЯ ТАБЛИЦЕЙ ИНЦИДЕНТНОСТИ:
Слайд 20

СЛЕДУЮЩИЙ ОРГРАФ ЗАДАЕТСЯ ТАБЛИЦЕЙ ИНЦИДЕНТНОСТИ:

СЛЕДУЮЩИЙ ГРАФ ЗАДАЕТСЯ ТАБЛИЦЕЙ ИНЦИДЕНТНОСТИ:
Слайд 21

СЛЕДУЮЩИЙ ГРАФ ЗАДАЕТСЯ ТАБЛИЦЕЙ ИНЦИДЕНТНОСТИ:

Список похожих презентаций

"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
I Функция У=АХ², её график и свойства

I Функция У=АХ², её график и свойства

А=1 У=Х ². А=2 У=2Х ². У=Х² У=2Х². Растяжение от оси Х в два раза. А=0.5 У=Х² У=0.5Х². Сжатие по оси Х в два раза. Вообще график функции У=АХ² можно ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Урок - повторение по теме: «Арифметический квадратный корень и его свойства». . . Учитель Переверзева М.В. МБОУСОШ «11. . Цель: подвести итоги ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Конспект урока математики в 10 классе. Жирнова С.В. учитель математики. Тема урока:. «Арифметический квадратный корень и его свойства». Тип урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...
Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов. . КАЗАХСТАН. ЮЖНО-КАЗАХСТАНСКАЯ ОБЛАСТЬ. Г.ШЫМКЕНТ, ОСНОВНАЯ СРЕДНЯЯ ШКОЛА №97. ...
Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
Биквадратное уравнение и его корни

Биквадратное уравнение и его корни

Учитель математики Апенькина Наталья Александровна. Конспект урока. Класс – 8. Тема – «Биквадратное уравнение и его корни». Цели урока: . образовательная:. ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Тема урока:. «Арифметическая и геометрическая прогрессии». . Цель урока:. Систематизировать и обобщить знания учащихся по теме «Арифметическая и ...
Верные и неверные равенства и неравенства

Верные и неверные равенства и неравенства

Муниципальное бюджетное образовательное учреждение. средняя общеобразовательная школа №1. . города Ярцева Смоленской области. . Конспект ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:25 апреля 2015
Категория:Математика
Содержит:21 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации