- Расчет сооружений методом конечных элементов

Презентация "Расчет сооружений методом конечных элементов" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15

Презентацию на тему "Расчет сооружений методом конечных элементов" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 15 слайд(ов).

Слайды презентации

Лекция 14 РАСЧЕТ СООРУЖЕНИЙ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ
Слайд 1

Лекция 14 РАСЧЕТ СООРУЖЕНИЙ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Современная вычислительная техника позволяет проводить расчеты сооружений с более подробным описанием их внутренней структуры и с более точным учетом действующих нагрузок. Для этого разработаны специальные методы расчета, среди которых наибольшее распространение получил метод конечных элементов (МКЭ
Слайд 2

Современная вычислительная техника позволяет проводить расчеты сооружений с более подробным описанием их внутренней структуры и с более точным учетом действующих нагрузок. Для этого разработаны специальные методы расчета, среди которых наибольшее распространение получил метод конечных элементов (МКЭ). 1. Понятие о методе конечных элементов Метод конечных элементов – это метод расчета сооружений, основанный на рассмотрении сооружения как совокупности типовых элементов, называемых конечными элементами (КЭ). В дискретном методе мы рассмотрели три типа стержневых элемента, которые используются и в МКЭ как конечные элементы.

Например, элемент 3-его типа в МКЭ называются ферменным КЭ, а 1-го типа – плоским стержневым КЭ. При расчете пространственных рам используется КЭ бруса. В расчетах плоских тел используются треугольный или четырехугольный КЭ. При расчете пространственных сооружений могут использоваться КЭ призмы или
Слайд 3

Например, элемент 3-его типа в МКЭ называются ферменным КЭ, а 1-го типа – плоским стержневым КЭ. При расчете пространственных рам используется КЭ бруса. В расчетах плоских тел используются треугольный или четырехугольный КЭ. При расчете пространственных сооружений могут использоваться КЭ призмы или КЭ тетраэдра и др.

Для расчета разных сооружений разработано множество других КЭ.

ферменный КЭ стержневой КЭ КЭ бруса треугольный КЭ

четырехугольный КЭ

призменный КЭ тетраэдальный КЭ

МКЭ – дискретный метод. В этом методе сооружение делится на определенное число КЭ, соединяемых между собой в узлах конечно-элементной модели. А нагрузка, действующая на сооружение, переносится в узлы. Это позволяет определять НДС сооружения через узловые усилия и перемещения конечно-элементной модел
Слайд 4

МКЭ – дискретный метод. В этом методе сооружение делится на определенное число КЭ, соединяемых между собой в узлах конечно-элементной модели. А нагрузка, действующая на сооружение, переносится в узлы. Это позволяет определять НДС сооружения через узловые усилия и перемещения конечно-элементной модели. В пределах одной и той же расчетной схемы сооружения можно выбирать разные расчетные модели по МКЭ, т.к. можно: − разбить ее на разное количество однотипных КЭ; − представить ее как комбинацию различных типов КЭ; − реализовать различные варианты МКЭ − в формах метода сил, метода перемещений и смешанного метода. В настоящее время широкое распространение получил МКЭ в форме метода перемещений.

2. Вариационные основы МКЭ. При решении многих задач статики, динамики и устойчивости сооружений определяется полная потенциальная энергия U: U = W – V. Здесь W – работа внешних сил, V – работа внутренних сил. Обычно они представляются в виде функций, зависящих от перемещений, деформаций, напряжений
Слайд 5

2. Вариационные основы МКЭ

При решении многих задач статики, динамики и устойчивости сооружений определяется полная потенциальная энергия U: U = W – V. Здесь W – работа внешних сил, V – работа внутренних сил. Обычно они представляются в виде функций, зависящих от перемещений, деформаций, напряжений элементов расчетной модели сооружения. Исследование этого выражения позволяет выявить важные законы механики, называемые принципами. Например, в теоретической механике известен принцип Лагранжа-Дирихле: для того чтобы механическая система находилась в равновесии, ее полная потенциальная энергия должна быть постоянной. Из этого принципа следует, что приращение полной потенциальной энергии системы, находящейся в равновесии, должно равняться нулю:

где символ  означает вариацию, вычисление которого схоже с вычислением дифференциала функции. Это уравнение позволяет свести задачу определения НДС сооружения к отысканию экстремума полной потенциальной энергии. Так как U =W − V , уравнение Лагранжа принимает вид. Вычисление приращения функции обыч
Слайд 6

где символ  означает вариацию, вычисление которого схоже с вычислением дифференциала функции. Это уравнение позволяет свести задачу определения НДС сооружения к отысканию экстремума полной потенциальной энергии. Так как U =W − V , уравнение Лагранжа принимает вид

Вычисление приращения функции обычно заменяется вычислением его приближенного значения − дифференциала. Тогда получается вариационное уравнение Лагранжа:

и формулируется как принцип Лагранжа: вариация работы внутренних сил равна вариации работы внешних сил. Вариационный принцип Лагранжа используется для сведения континуальной задачи к дискретной задаче путем аппроксимации непрерывных полей перемещений, деформаций, напряжений внутри конечного элемента через его узловые перемещения. Этот принцип является основой варианта МКЭ в форме метода перемещений. Имеются и другие вариационные принципы − принципы Кастильяно, Рейсснера, Ху-Вашицу и др.

3. Аппроксимация КЭ. При выборе конечно-элементной модели сооружения можно вводить узлы с разным числом степеней свободы. Например, в плоской системе вводятся узлы с тремя, с двумя или с одной степенью свободы: Для использования принципа Лагранжа вводятся координатные функции, аппроксимирующие непре
Слайд 7

3. Аппроксимация КЭ

При выборе конечно-элементной модели сооружения можно вводить узлы с разным числом степеней свободы. Например, в плоской системе вводятся узлы с тремя, с двумя или с одной степенью свободы:

Для использования принципа Лагранжа вводятся координатные функции, аппроксимирующие непрерывное поле перемещений внутри КЭ через перемещения ее узлов:

где – вектор перемещений внутренних точек КЭ, C – матрица координатных функций,  – вектор коэффициентов. Элементы матрицы C выбираются в виде полиномов, непрерывных внутри КЭ. Если в полиноме учитывается минимальное число членов, то такой КЭ называется симплекс-элементом. При учете большего числа членов полинома, КЭ называется комплекс-элементом.

Как пример рассмотрим ферменный КЭ с узлами i и j в местной системе координат. Его узлы имеют по одной поступательной степени свободы и соответствующие им узловые перемещения u1i и u1j. Пусть в узлах КЭ приложены силы P1i и P1j : Перемещения внутренних точек элемента будем аппроксимировать полиномом
Слайд 8

Как пример рассмотрим ферменный КЭ с узлами i и j в местной системе координат. Его узлы имеют по одной поступательной степени свободы и соответствующие им узловые перемещения u1i и u1j. Пусть в узлах КЭ приложены силы P1i и P1j :

Перемещения внутренних точек элемента будем аппроксимировать полиномом первой степени

Запишем его в матричной форме:

где − матрица координатных функций, − вектор коэффициентов.

Подставив и в полином, получим два равенства: С другой стороны, Тогда предыдущие уравне-ния примут вид: Их можно записать в матричной форме: или как где
Слайд 9

Подставив и в полином, получим два равенства:

С другой стороны, Тогда предыдущие уравне-ния примут вид:

Их можно записать в матричной форме:

или как где

Определим вектор : Тогда или. Входящая сюда матрица. называется матрицей форм. Она позволяет аппроксимировать поле перемещений внутренних точек КЭ через перемещения узлов. По аналогии с перемещениями, поле внутренних усилий в КЭ можно аппроксимировать через вектор узловых сил по формуле
Слайд 10

Определим вектор :

Тогда или

Входящая сюда матрица

называется матрицей форм. Она позволяет аппроксимировать поле перемещений внутренних точек КЭ через перемещения узлов. По аналогии с перемещениями, поле внутренних усилий в КЭ можно аппроксимировать через вектор узловых сил по формуле

4. Матрица жесткости КЭ. Известные в механике геометрические и физические соотношения для континуальных систем можно записать в виде, аналогичном рассмотренным ранее уравнениям дискретного подхода: для дискретной системы для континуальной системы. Здесь: и – вектора деформаций и напряжений, и – матр
Слайд 11

4. Матрица жесткости КЭ

Известные в механике геометрические и физические соотношения для континуальных систем можно записать в виде, аналогичном рассмотренным ранее уравнениям дискретного подхода: для дискретной системы для континуальной системы

Здесь: и – вектора деформаций и напряжений, и – матрицы равновесия и податливости.

При рассмотрении конечного элемента как континуальной системы, принцип Лагранжа можно записать в виде

где левая и правая части представляют возможные работы внутренних и внешних сил, а интегрирование ведется по объему КЭ V.

После этого осуществляется переход к дискретной модели КЭ с использованием матрицы форм H. Тогда, после ряда преобразований получается матричное уравнение, связывающее вектор узловых перемещений u с вектором узловых усилий P КЭ: в которой симметричная квадратная матрица. − матрица жесткости конечног
Слайд 12

После этого осуществляется переход к дискретной модели КЭ с использованием матрицы форм H. Тогда, после ряда преобразований получается матричное уравнение, связывающее вектор узловых перемещений u с вектором узловых усилий P КЭ:

в которой симметричная квадратная матрица

− матрица жесткости конечного элемента. Физический смысл любого элемента kij матрицы K – это реакция (реактивная сила), возникающая в i-ом направлении от заданного единичного перемещения в j-ом направлении.

К примеру, для рассмотренного ферменного КЭ, находящегося в одноосном напряженном состоянии, геометрическое уравнение будет. Сравнив его с матричным уравнением. видим, что матрица равновесия будет дифференциальным оператором с одним членом: Из уравнения связи между деформацией и напряжением. следует
Слайд 13

К примеру, для рассмотренного ферменного КЭ, находящегося в одноосном напряженном состоянии, геометрическое уравнение будет

Сравнив его с матричным уравнением

видим, что матрица равновесия будет дифференциальным оператором с одним членом:

Из уравнения связи между деформацией и напряжением

следует, что матрица податливости будет:

Для определения матрицы жесткости такого КЭ вычислим все необходимые величины: Интегрирование по объему V сводится к интегрированию по длине l КЭ, т.к. (F − площадь сечения КЭ):
Слайд 14

Для определения матрицы жесткости такого КЭ вычислим все необходимые величины:

Интегрирование по объему V сводится к интегрированию по длине l КЭ, т.к. (F − площадь сечения КЭ):

При рассмотрении прямо-угольного КЭ толщиной t и размерами 2a и 2b с четырьмя узлами i, j, k, m и восемью узловыми перемещениями, ее матрица жесткости будет иметь размеры 88. Для краткости записи эту матрицу жесткости представим в блочной форме с 16 блоками одинаковой размерности 22: Здесь μ – коэ
Слайд 15

При рассмотрении прямо-угольного КЭ толщиной t и размерами 2a и 2b с четырьмя узлами i, j, k, m и восемью узловыми перемещениями, ее матрица жесткости будет иметь размеры 88.

Для краткости записи эту матрицу жесткости представим в блочной форме с 16 блоками одинаковой размерности 22:

Здесь μ – коэффициент Пуассона. Элементы каждого блока матрицы K определяются по разным формулам. Например,

Список похожих презентаций

Решение неравенств методом интервалов

Решение неравенств методом интервалов

Треугольник. символизирует лидерство. Самой характерной особенностью человека, выбравшего этот символ, является концентрироваться на главной цели. ...
Использование элементов технологии самосовершенствования личности на уроках математики в классах коррекционно – компенсирующего обучения

Использование элементов технологии самосовершенствования личности на уроках математики в классах коррекционно – компенсирующего обучения

По данным НИИ детства, ежегодно рождается 5 - 8℅ детей с наследственной патологией, 8 – 10 % имеют выраженную врождённую или приобретенную патологию, ...
Решение неравенств методом интервалов

Решение неравенств методом интервалов

Методом интервалов можно решать неравенства вида: f(х)>0 , f(х)0 f(х). Необходимым условием смены знака в точке С является : f (c)=0. Однако , это ...
Решение тригонометрических уравнений методом оценки

Решение тригонометрических уравнений методом оценки

Не все тригонометрические уравнения можно решить известными нам методами (методами разложения на множители, методами замены переменной или подстановки, ...
Стратегия игры. Решение задач методом «ГРАФЫ»

Стратегия игры. Решение задач методом «ГРАФЫ»

Состав графа. Граф состоит из вершин, связанных линиями. Направленная линия (со стрелкой) называется дугой. Линия ненаправленная (без стрелки) называется ...
Решение неравенств с параметрами методом областей

Решение неравенств с параметрами методом областей

«Но когда эти науки (алгебра и геометрия) объединились, они энергично поддержали друг друга и быстро зашагали к совершенству». Ж.А. Лагранж. АКТУАЛЬНОСТЬ ...
Решение системы линейных уравнений методом Крамера

Решение системы линейных уравнений методом Крамера

Системы линейных уравнений. Уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных. ...
Применение элементов математического анализа при решении задач

Применение элементов математического анализа при решении задач

- Учиться проводить анализ условия задачи, что помогает поиску способа решения;. Цели урока. - Учиться переводить язык задачи на язык производной ...
Размещение элементов

Размещение элементов

Размещение. В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что каждое место занято в точности ...
Построение графика функции методом ее исследования с помощью производной

Построение графика функции методом ее исследования с помощью производной

доцент кафедры математического образования Батан Любовь Федоровна. учитель математики первой квалификационной категории МОУ лицей № 176 Ткаченко Зоя ...
Построение сечений многогранников методом «следа»

Построение сечений многогранников методом «следа»

Секущей плоскостью многогранника называется такая плоскость, по обе стороны от которой есть точки данного многогранника. Сечением многогранника называется ...
Построение геометрических фракталов методом рекурсии

Построение геометрических фракталов методом рекурсии

"Почему геометрию часто называют холодной и сухой? Одна из причин заключается в её неспособности описать форму облака, горы, дерева или берега моря. ...
Моделирование, алгоритмизация и оптимизация элементов и систем в теплоэнергетике

Моделирование, алгоритмизация и оптимизация элементов и систем в теплоэнергетике

Программа дисциплины Объем: 150 часов Структура: Введение Гл. 1 Методологические основы математического моделирования Гл. 2 Моделирование задач с ...
Методика изучения элементов комбинаторики в условиях профильного обучения математике

Методика изучения элементов комбинаторики в условиях профильного обучения математике

Содержание. Введение Глава 1. Цели изучения стохастической линии в школе 1) Из истории комбинаторики 2) Цели изучения стохастики в школе Глава 2. ...
Решение неравенств методом интервалов

Решение неравенств методом интервалов

Цели урока:. Закрепление навыков решения неравенств методом интервалов Развитие умений сравнивать решения, выявлять правильные ответы, преодолевать ...
Расчет параметров слоев

Расчет параметров слоев

[Ом·см]. [Ом/]. N(hслоя) = Nподл, N(hслоя) = Nэпитакс. Nэмиттера(h эмиттера) = Nакт базы(h эмиттера). Диффузия в полуограниченную область. Случай ...
Решение неравенств методом интервалов

Решение неравенств методом интервалов

0 x y. Пусть графиком функции y=f(x) является некоторая гладкая кривая:. y=f(x). Очевидно, что D(f)=E(f)=. Обратим свое внимание на значения аргумента ...
Расчет погрешностей косвенных измерений

Расчет погрешностей косвенных измерений

В большинстве случаев измерение физических величин являются косвенными, т.е. результат определяется на основе расчетов. Например, для определения ...
Решение систем уравнений методом новой переменной

Решение систем уравнений методом новой переменной

Решение систем уравнений. методом введения новой переменной переменной. Разминка! Что такое решение системы уравнений? Какие методы решения систем ...
Расчет пути и времени движения

Расчет пути и времени движения

t. Схема для запоминания формул расчёта v, t, S при равномерном движении. Запомни! s. Какие единицы скорости вы знаете? 2. Скорость зайца 15 м/с, ...

Конспекты

Уравнение. Решение уравнений методом подбора

Уравнение. Решение уравнений методом подбора

Тема урока:. «Уравнение. Решение уравнений методом подбора». Класс. -2. . . Тип урока:. закрепления полученных знаний. Предмет -. математика. ...
Решение уравнений методом подстановки

Решение уравнений методом подстановки

Открытый урок по теме:. . . Решение уравнений методом подстановки. . . Учитель математики ГОУ гимназии № 1549 Шмелева Ирина Дмитриевна. ...
Уравнение. Решение уравнений методом подбора

Уравнение. Решение уравнений методом подбора

Конспект урока математики. 2 класс. Тема:. «Уравнение. Решение уравнений методом подбора». Цель:. Формирование. . представления об уравнении ...
Решение неравенств методом интервалов

Решение неравенств методом интервалов

Тема урока «Решение неравенств методом интервалов». Цель урока. : формировать навыки и умения учащихся при решение неравенств методом интервалов; ...
Решение систем уравнений второй степени методом замены переменной

Решение систем уравнений второй степени методом замены переменной

Открытый урок по теме. «Решение систем уравнений второй степени методом замены переменной». Цели урока:. 1) Открыть совместно с учащимися новый ...
Решение неравенств методом интервалов

Решение неравенств методом интервалов

Тема урока:. Решение неравенств методом интервалов. Класс:. 9. . Тип урока:. урок освоения новых знаний. . Цель:. сформировать навыки решения ...
Решение неравенств методом интервалов

Решение неравенств методом интервалов

ПЛАН-КОНСПЕКТ УРОКА Решение неравенств методом интервалов. . ФИО: Метельская Т.А. . . . . Место работы : МОУ Лицей №7 г. Саяногорска. ...
Решение квадратных неравенств методом интервалов

Решение квадратных неравенств методом интервалов

Урок 81. 6. Решение квадратных неравенств методом интервалов. учитель математики. СШ №19, г. Актобе Испимбетова А.Т. Цель урока. : Проверить умение ...
Особые приёмы при решении трансцендентных неравенств методом интервалов

Особые приёмы при решении трансцендентных неравенств методом интервалов

Павлюк Ирина Владиславовна. учитель математики. МБОУ гимназия №19 г. Липецка. Методическая разработка. «Особые приёмы при решении трансцендентных ...
Знакомство с уравнениями. Решение уравнений методом подбора

Знакомство с уравнениями. Решение уравнений методом подбора

Урок математики во 2 классе. Тема: Знакомство с уравнениями. Решение уравнений методом подбора. Цели урока:. . Обучающие:. открыть вместе ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 мая 2019
Категория:Математика
Содержит:15 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации