- Метод математической индукции

Презентация "Метод математической индукции" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Метод математической индукции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Метод математической индукции. Подготовила ученица 10 «А» класса Терещенко Мария.
Слайд 1

Метод математической индукции

Подготовила ученица 10 «А» класса Терещенко Мария.

Содержание: 1.Введение. 2.Основная часть и примеры. 3.Заключение.
Слайд 2

Содержание: 1.Введение. 2.Основная часть и примеры. 3.Заключение.

Введение В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяе
Слайд 3

Введение В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Основная часть По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.
Слайд 4

Основная часть По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4
Слайд 5

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых. Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев. Иногда общий резул
Слайд 6

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых. Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев. Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам. Во многих слу
Слайд 7

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции.

Принцип математической индукции. Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.
Слайд 8

Принцип математической индукции. Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

Если предложение А(n) истинно при n=p и если А(k) >А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p. Док-во по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(
Слайд 9

Если предложение А(n) истинно при n=p и если А(k) >А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p. Док-во по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть док-ва, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k ,т.е. доказывают, что А(k) >A(k+1).

Метод математической индукции в решении задач на делимость. Пример 1 Доказать, что при любом n , 7 n-1 делится на 6 без остатка. Решение: 1)Пусть n=1, тогда Х1 =71-1=6 делится на 6 без остатка. Значит при n=1 утверждение верно. 2) Предположим, что при n=k ,7k-1 делится на 6 без остатка.
Слайд 10

Метод математической индукции в решении задач на делимость. Пример 1 Доказать, что при любом n , 7 n-1 делится на 6 без остатка. Решение: 1)Пусть n=1, тогда Х1 =71-1=6 делится на 6 без остатка. Значит при n=1 утверждение верно. 2) Предположим, что при n=k ,7k-1 делится на 6 без остатка.

3) Докажем, что утверждение справедливо для n=k+1. X k+1 =7 k+1 -1=7 7 k -7+6=7(7 k -1)+6. Первое слагаемое делится на 6, поскольку 7 k-1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n-1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение док
Слайд 11

3) Докажем, что утверждение справедливо для n=k+1. X k+1 =7 k+1 -1=7 7 k -7+6=7(7 k -1)+6. Первое слагаемое делится на 6, поскольку 7 k-1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n-1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение доказано.

Применение метода к суммированию рядов. Пример 2 Доказать, что 1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х (1) Решение: 1) При n=1 получаем 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1 следовательно, при n=1 формула верна; А(1) истинно.
Слайд 12

Применение метода к суммированию рядов. Пример 2 Доказать, что 1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х (1) Решение: 1) При n=1 получаем 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1 следовательно, при n=1 формула верна; А(1) истинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е. 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1). Докажем, что тогда выполняется равенство 1+х+х 2+х 3+…+х k +x k+1 =(x k+2 -1)/(х-1). В самом деле 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k )+x k+1 = (x k+1 -1)/(x-1)+x k+1 = =(x k+2
Слайд 13

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е. 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1). Докажем, что тогда выполняется равенство 1+х+х 2+х 3+…+х k +x k+1 =(x k+2 -1)/(х-1). В самом деле 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k )+x k+1 = (x k+1 -1)/(x-1)+x k+1 = =(x k+2 -1)/(x-1). Итак, А(k) > A(k+1). На основании принципа математической индукции заключаем, что формула верна для любого натурального числа n.

Применения метода к доказательству неравенств. Пример 3 Доказать, что при n>2 справедливо неравенство 1+(1/2 2 )+(1/3 2 )+…+(1/n 2 )
Слайд 14

Применения метода к доказательству неравенств. Пример 3 Доказать, что при n>2 справедливо неравенство 1+(1/2 2 )+(1/3 2 )+…+(1/n 2 )

3) Докажем справедливость неравенства при n=k+1 (1+(1/2 2 )+…+(1/k 2 ))+(1/(k+1) 2 )
Слайд 15

3) Докажем справедливость неравенства при n=k+1 (1+(1/2 2 )+…+(1/k 2 ))+(1/(k+1) 2 )

Метод в применение к другим задачам. Пример 4 Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2. Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно. 2) Предположим, что во всяком выпуклом k-угольнике имеет ся А k =k(k-3)/2 д
Слайд 16

Метод в применение к другим задачам. Пример 4 Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2. Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно. 2) Предположим, что во всяком выпуклом k-угольнике имеет ся А k =k(k-3)/2 диагоналей.

3)Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2. Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы подсчитать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2
Слайд 17

3)Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2. Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы подсчитать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k. Таким образом, k+1=k+(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2. Итак, А(k) > A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Заключение В частности изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу. В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как
Слайд 18

Заключение В частности изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу. В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Список похожих презентаций

Полная и неполная индукция.  Метод математической индукции

Полная и неполная индукция. Метод математической индукции

Дедуктивный и индуктивный метод В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений ...
«Метод математической индукции»

«Метод математической индукции»

В основе математического исследования лежит. Дедуктивный метод. Индуктивный метод. Дедуктивный метод – это рассуждение, исходным моментом которого ...
Методы решений заданий С5. Метод областей в решении задач

Методы решений заданий С5. Метод областей в решении задач

(«переход» метода интервалов с прямой на плоскость). 1. Область определения 2. Граничные линии 3. Координатная плоскость 4. Знаки в областях 5.Ответ ...
Метод площадей при решении геометрических задач

Метод площадей при решении геометрических задач

Cодержание. Введение. В элементарной математике, самыми трудными считаются геометрические задачи. При решении геометрических задач, как правило, алгоритмов ...
Метод областей

Метод областей

Выдающийся французский математик, физик и писатель, один из создателей математического анализа, проектной геометрии, теории вероятностей, гидростатики, ...
Метод координат на плоскости

Метод координат на плоскости

1. Координатная ось. Координатной осью называется прямая, на которой отмечена точка О (начало отсчета или начало координат), выбран масштаб, т.е. ...
Метод координат в пространстве

Метод координат в пространстве

Цели урока:. 1.Повторить понятия вектора; 2.Ввести понятие прямоугольной системы координат в пространстве. Задачи урока: выработать умения строить ...
Базовые понятия математической статистики

Базовые понятия математической статистики

измерение есть присваивание чисел определенным объектам, свойствам, признакам, событиям или изменениям в соответствии с определенными правилами. психологические ...
Элементы математической логики

Элементы математической логики

Луна – спутник Земли. 2) Информатика –это наука об информации и информационных процессах. 3) Монитор – это устройство ввода информации. 4) Процессор ...
Метод Гаусса решения систем линейных уравнений

Метод Гаусса решения систем линейных уравнений

Рассмотрим систему m линейных уравнений с n неизвестными:. Назовем матрицей системы матрицу, составленную из коэффициентов при неизвестных. Матрицу, ...
Метод Гаусса и Крамера

Метод Гаусса и Крамера

Содержание. Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер Метод Крамера Вывод Использованные источники информации. Матрица Определение. ...
Метод Варда

Метод Варда

Джо Вард. Доктор Д. Вард работал в таких направлениях, как Педагогическая психология Статистика И другие. Он был консультантом ВВС, армии и флота ...
История математической логики

История математической логики

ЭТАПЫ РАЗВИТИЯ ЛОГИКИ. Аристотель Рене Декарт Лейбниц Джордж Буль Последующее развитие логики. АРИСТОТЕЛЬ (384-322 ГГ. ДО Н.Э.) - ОСНОВОПОЛОЖНИК ЛОГИКИ. ...
Вводный урок "Элементы математической статистики"

Вводный урок "Элементы математической статистики"

Термин «статистика» произошел от латинского слова «статус» (status), что означает «состояние и положение вещей». Математическая статистика. это наука, ...
Базовые понятия математической статистики

Базовые понятия математической статистики

Описательная статистика. Локализация Среднее значение Медиана Мода. Дисперсия Перцентиль Межквартильный размах Размах признака Дисперсия Стандартное ...
Требования к математической подготовке учащихся к началу основной школы

Требования к математической подготовке учащихся к началу основной школы

Основные содержательные линии.  Арифметическая составляющая  Умение работать с числами  Умение работать с величинами  Геометрическая составляющая. ...
Метод графов

Метод графов

Введение. Графы заинтересовали нас своей возможностью помогать в решении различных головоломок, математических и логических задач. Так как мы участвуем ...
Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Содержание. Введение Пример 1. Учительница подготовила к контрольной работе… Решения: 1.а)    1.б) 1.в) 1.г) Пример 2. Известно, что х = 2аЗb5с и а, ...
Метод золотого сечения

Метод золотого сечения

Золотая пропорция – гармония и красота. Выполнили учащиеся 9 класса: Ларина Екатерина, Морозов Дмитрий, Кочеткова Яна, Петрович Денис и др. Гармоничны ...
Метод координат

Метод координат

Рене Декарт (1596-1650). Французский математик, физик, философ, создатель знаменитого метода координат, сторонник механизма с физике, предтеча рефлексологии. ...

Конспекты

Элементы теории вероятности и математической статистики

Элементы теории вероятности и математической статистики

Управление образования г.Астаны. ИПК и ПК СО. ГУ «Средняя школа № 36». Урок алгебры в 9 классе по теме: «Элементы теории вероятности ...
Формы представления информации. Метод координат

Формы представления информации. Метод координат

Автор:. Коджамонян Оксана Игоревна. Должность. : учитель информатики. Место работы. : МБОУ СОШ 30 посёлка Молодёжного муниципального образования ...
Элементы математической статистики и теории вероятности

Элементы математической статистики и теории вероятности

Тема урока:.  Элементы математической статистики и теории вероятности. Основные цели и задачи урока:.  Повторить основные понятия изучаемого предмета: ...
Метод перебора

Метод перебора

Учитель математики Епифанова Т. Н. Проблемно – диалогический урок в 5 классе. . . Тема: Метод перебора. . Учитель. Ученики. ...
Системы линейных уравнений. Метод Гаусса

Системы линейных уравнений. Метод Гаусса

ГБОУ средней общеобразовательной школы №618 г. Москвы. Конспект урока. по теме. «Системы линейных уравнений. Метод Гаусса». ...
Метод интервалов

Метод интервалов

Урок по теме "Метод интервалов ", 9-й класс. Цели:. Деятельностная цель:. формирование умений применением метода интервалов при решении простейших ...
Метод координат на плоскости. Координаты на прямой

Метод координат на плоскости. Координаты на прямой

Муниципальное бюджетное общеобразовательное учреждение. «Вечерняя сменная средняя общеобразовательная школа при ИУ». Конспект урока. Метод координат ...
Метод интервалов

Метод интервалов

Урок по теме "Метод интервалов". Цель:. Рассмотрение метода интервалов и его использование для решения квадратных неравенств, неравенств, связанных ...
Метод интервалов

Метод интервалов

Конспект урока алгебры в 10-м классе. Сизых Галины Дмитриевны. учителя математики МБОУ. «Качульская средняя. . общеобразовательная школа». ...
Метод интервалов

Метод интервалов

Филиал МОУ Петряксинская СОШ- Ново-Мочалеевская ООШ. Разработка урока. . «Метод интервалов». 8 класс. Урок разработан учителем ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:17 ноября 2018
Категория:Математика
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации