- Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Презентация "Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34

Презентацию на тему "Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 34 слайд(ов).

Слайды презентации

Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей. §52. Сочетания и размещения. Часть I. Цыбикова Тамара Раднажаповна, учитель математики. 08.02.2014
Слайд 1

Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей

§52. Сочетания и размещения. Часть I

Цыбикова Тамара Раднажаповна, учитель математики

08.02.2014

Содержание. Введение Пример 1. Учительница подготовила к контрольной работе… Решения: 1.а)	1.б) 1.в) 1.г) Пример 2. Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. Решения: 2.а) 2.б) 2.в) 2.г) Актуализация опорных знаний: Определение 1. n! Теорема 1 о числе перестановок Pn =n! Пр
Слайд 2

Содержание

Введение Пример 1. Учительница подготовила к контрольной работе… Решения: 1.а) 1.б) 1.в) 1.г) Пример 2. Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. Решения: 2.а) 2.б) 2.в) 2.г) Актуализация опорных знаний: Определение 1. n! Теорема 1 о числе перестановок Pn =n! Пример 3. К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. Решения: 3.а) 3.б) 3.в) 3. г)

Пример 4. В чемпионате по футболу участвовало 7 команд. Решения: 1 способ; 2 способ; 3 способ Анализ примера 4 Определение 2. Число сочетаний из n элементов по 2 Пример 5. Встретились 11 футболистов и 6 хоккеистов и каждый стал по одному разу играть с каждым в шашки Теорема 3 и определение 3. Число размещений из n элементов по 2 Пример 6. В классе 27 учеников. К доске нужно вызвать двоих. Итоги выборов двух элементов из n данных Источники

Введение. Правило умножения, которое мы использовали в предыдущем параграфе, применимо не только к двум, но и к трём, четырём и т.д. испытаниям.
Слайд 3

Введение

Правило умножения, которое мы использовали в предыдущем параграфе, применимо не только к двум, но и к трём, четырём и т.д. испытаниям.

Пример 1. Учительница подготовила к контрольной работе 4 примера на решение линейных неравенств, 5 текстовых задач (две на движение и три на работу) и 6 примеров на решение квадратных уравнений (в двух из них D
Слайд 4

Пример 1

Учительница подготовила к контрольной работе 4 примера на решение линейных неравенств, 5 текстовых задач (две на движение и три на работу) и 6 примеров на решение квадратных уравнений (в двух из них D

Пример 1.а). Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D
Слайд 5

Пример 1.а)

Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 1.б). Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D
Слайд 6

Пример 1.б)

Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 1.в). Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D
Слайд 7

Пример 1.в)

Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Пример 1.г). Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D
Слайд 8

Пример 1.г)

Подготовлены к к.р. 4 неравенств, 5 задач (2на движение и 3 на работу) и 6 квадратных уравнений (в 2 из них D

Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I Слайд: 9
Слайд 9
Пример 2. Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а)Найти наименьшее и наибольшее значения числа х. б)Сколько всего таких чисел можно составить? в)Сколько среди них будет четных чисел? г)Сколько среди них будет чисел, оканчивающихся нулем?
Слайд 10

Пример 2

Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а)Найти наименьшее и наибольшее значения числа х. б)Сколько всего таких чисел можно составить? в)Сколько среди них будет четных чисел? г)Сколько среди них будет чисел, оканчивающихся нулем?

Пример 2.а). Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : а) хнаим = 2030
Слайд 11

Пример 2.а)

Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : а) хнаим = 203050 = 1, когда а=Ь=с=0. хнаиб = 233353=8•27•125=27000, когда а=Ь=с=3. Ответ: а) 1 и 27 000.

Пример 2.б). Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : б) Рассмотрим т
Слайд 12

Пример 2.б)

Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : б) Рассмотрим три испытания: выбор числа а , выбор числа Ь и выбор числа с. Они независимы друг от друга, и в каждом имеется по четыре исхода. По правилу умножения получаем, что всего возможны 4•4•4=64 варианта. Ответ: б) 64.

Пример 2.в). Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : в) Число х = 2а
Слайд 13

Пример 2.в)

Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся нулем? РЕШЕНИЕ : в) Число х = 2аЗb5с будет четным только в тех случаях, когда а > 0, т. е. когда аЄ{1,2,3}. Значит, для выбора числа а есть три исхода. Снова применим правило умножения. Получим 4•3•4 = 48 вариантов. Ответ: в) 48

Пример 2.г). Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся 0? РЕШЕНИЕ : г) Число х = 2аЗb5с
Слайд 14

Пример 2.г)

Известно, что х = 2аЗb5с и а, Ь, с — числа из множества {0,1,2, 3}. а) Найти наименьшее и наибольшее значения числа х. б) Сколько всего таких чисел можно составить? в) Сколько среди них будет четных чисел? г) Сколько среди них будет чисел, оканчивающихся 0? РЕШЕНИЕ : г) Число х = 2аЗb5с будет оканчиваться нулем только в тех случаях, когда среди множителей есть хотя бы одна двойка и есть хотя бы одна пятерка, т. е. когда аЄ{1,2,3} и cЄ{1,2,3}. Значит, для выбора чисел а и с есть по три исхода. Снова применим правило умножения. Получим 3•4•3=36 вариантов. Ответ: а) 1 и 27 000; б) 64; в) 48; г) 36.

Актуализация опорных знаний. В курсе алгебры 9 класса вы познакомились с понятием факториала и теоремой о перестановках. Напомним их. Определение 1. Произведение подряд идущих первых n натуральных чисел n! и называют «эн факториал»: n!=123…(n-2)(n-1)n
Слайд 15

Актуализация опорных знаний

В курсе алгебры 9 класса вы познакомились с понятием факториала и теоремой о перестановках. Напомним их. Определение 1. Произведение подряд идущих первых n натуральных чисел n! и называют «эн факториал»: n!=123…(n-2)(n-1)n

Теорема 1. n различных элементов можно расставить по одному на n различных место ровно n! способами. Как правило, эту теорему записывают в виде краткой формулы: Pn=n! Pn-это число перестановок из n различных из n различных элементов, оно равно n!.
Слайд 16

Теорема 1. n различных элементов можно расставить по одному на n различных место ровно n! способами. Как правило, эту теорему записывают в виде краткой формулы: Pn=n! Pn-это число перестановок из n различных из n различных элементов, оно равно n!.

Пример 3. К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. а) Сколькими способами можно рассадить гостей за столом? б) Сколькими способами можно рассадить гостей за столом, если место хозяина дома уже известно? в) Сколькими способами можно рассадить гостей за столом,
Слайд 17

Пример 3

К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. а) Сколькими способами можно рассадить гостей за столом? б) Сколькими способами можно рассадить гостей за столом, если место хозяина дома уже известно? в) Сколькими способами можно рассадить гостей за столом, если известно, что гостя С следует посадить рядом с гостем А? г) Сколькими способами можно рассадить гостей за столом, если известно, что гостя А не следует сажать рядом с гостем D?

Пример 3.а). К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. а) Сколькими способами можно рассадить гостей за столом? РЕШЕНИЕ: а) На 5 стульев должны сесть 5 человек (включая хозяина дома). Значит, всего имеется Р5 способов их рассаживания: Р5 = 5! = 120. Ответ: 120
Слайд 18

Пример 3.а)

К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. а) Сколькими способами можно рассадить гостей за столом? РЕШЕНИЕ: а) На 5 стульев должны сесть 5 человек (включая хозяина дома). Значит, всего имеется Р5 способов их рассаживания: Р5 = 5! = 120. Ответ: 120

Пример 3.б). К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. б) Сколькими способами можно рассадить гостей за столом, если место хозяина дома уже известно? РЕШЕНИЕ: б) Так как место хозяина фиксировано, то следует рассадить четырех гостей на четыре места. Это можно с
Слайд 19

Пример 3.б)

К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. б) Сколькими способами можно рассадить гостей за столом, если место хозяина дома уже известно? РЕШЕНИЕ: б) Так как место хозяина фиксировано, то следует рассадить четырех гостей на четыре места. Это можно сделать Р4=4!=24 способами. Ответ: 24

Пример 3.в). К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. в) Сколькими способами можно рассадить гостей за столом, если известно, что гостя С следует посадить рядом с гостем А? РЕШЕНИЕ: в) Сначала выберем место для гостя А. Возможны 5 вариантов. Если место гостя А
Слайд 20

Пример 3.в)

К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. в) Сколькими способами можно рассадить гостей за столом, если известно, что гостя С следует посадить рядом с гостем А? РЕШЕНИЕ: в) Сначала выберем место для гостя А. Возможны 5 вариантов. Если место гостя А уже известно, то гостя С следует посадить или справа, или слева от А, всего 2 варианта. После того как места для А и С уже выбраны, нужно трех человек произвольно рассадить на 3 оставшихся места: Р3 = 3! = 6 вариантов. Остается применить правило умножения: 5 • 2 • 6 = 60. Ответ: 60

Пример 3.г). К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. г) Сколькими способами можно рассадить гостей за столом, если известно, что гостя А не следует сажать рядом с гостем D? РЕШЕНИЕ г) Решение такое же, как и в пункте в). Место для гостя D после выбора места д
Слайд 21

Пример 3.г)

К хозяину дома пришли гости А, Б, С, D. За круглым столом — пять разных стульев. г) Сколькими способами можно рассадить гостей за столом, если известно, что гостя А не следует сажать рядом с гостем D? РЕШЕНИЕ г) Решение такое же, как и в пункте в). Место для гостя D после выбора места для А можно также выбрать двумя способами: на два отдаленных от А стула. Ответ: а) 120; б) 24; в) 60; г) 60.

Пример 4. В чемпионате по футболу участвовало 7 команд. Каждая команда сыграла по одной игре с каждой командой. Сколько всего было игр?
Слайд 22

Пример 4.

В чемпионате по футболу участвовало 7 команд. Каждая команда сыграла по одной игре с каждой командой. Сколько всего было игр?

РЕШЕНИЕ: I способ. Рассмотрим таблицу 77, в которую вписаны результаты игр. В ней 49 клеток. По диагонали клетки закрашены, так как никакая команда не играет сама с собой. Если убрать диагональные клетки, то останется 72-7=42 клетки. В нижней части результатов нет, потому что все они получаются отр
Слайд 23

РЕШЕНИЕ: I способ

Рассмотрим таблицу 77, в которую вписаны результаты игр. В ней 49 клеток. По диагонали клетки закрашены, так как никакая команда не играет сама с собой. Если убрать диагональные клетки, то останется 72-7=42 клетки. В нижней части результатов нет, потому что все они получаются отражением уже имеющихся результатов из верхней части таблицы. Поэтому количество всех проведенных игр равно половине от 42, т.е. 21.

РЕШЕНИЕ: II способ. Произвольно пронумеруем команды №1, №2, …, №7 и посчитаем число игр поочередно. Команда №1 встречается с командами №2-7 – это 6 игр, №2 – с №3-7 – это 5 игр и т.д. Всего 6+5+4+3+2+1=21 игр.
Слайд 24

РЕШЕНИЕ: II способ

Произвольно пронумеруем команды №1, №2, …, №7 и посчитаем число игр поочередно. Команда №1 встречается с командами №2-7 – это 6 игр, №2 – с №3-7 – это 5 игр и т.д. Всего 6+5+4+3+2+1=21 игр.

РЕШЕНИЕ: III способ. Используем геометрическую модель: 7 команд – это вершины выпуклого 7-угольника, а отрезок между двумя вершинами – это встреча двух соответствующих команд: сколько отрезков – столько игр. Из каждой вершины выходит 6 отрезков – столько игр. Получается 76=42 отрезков, каждый из ко
Слайд 25

РЕШЕНИЕ: III способ

Используем геометрическую модель: 7 команд – это вершины выпуклого 7-угольника, а отрезок между двумя вершинами – это встреча двух соответствующих команд: сколько отрезков – столько игр. Из каждой вершины выходит 6 отрезков – столько игр. Получается 76=42 отрезков, каждый из которых посчитан дважды: и как АВ, и как ВА. Значит, 42/2=21 отрезок. ОТВЕТ: 21

Анализ примера 4. Состав игры определен, как только мы выбираем две команды. Значит, количество всех игр в турнире для n команд – это в точности количество всех выборов двух элементов из n данных элементов. Важно при этом то, что порядок выбора не имеет значения, т.е. если выбрано две команды, то ка
Слайд 26

Анализ примера 4

Состав игры определен, как только мы выбираем две команды. Значит, количество всех игр в турнире для n команд – это в точности количество всех выборов двух элементов из n данных элементов. Важно при этом то, что порядок выбора не имеет значения, т.е. если выбрано две команды, то какая из них первая, а какая вторая – не существенно. Первую команду можно выбрать n способами, а вторую – (n-1) способами. По правилу умножения получаем n(n-1). Но при этом состав каждой игры посчитан дважды. Значит, число игр равно n(n-1)/2. Тем самым фактически доказана следующая теорема. Теорема 2 (о выборе двух элементов). Если множество состоит из n элементов и требуется выбрать два элемента без учета их порядка, то такой выбор можно произвести n(n-1)/2 способами.

Определение 2. Достаточно длинный словесный оборот «число всех выборов двух элементов без учета их порядка из n данных» неудобен при постоянном использовании в решении задач. Математики поступили просто: ввели новый термин и специальное обозначение. Определение 2. число всех выборов двух элементов б
Слайд 27

Определение 2

Достаточно длинный словесный оборот «число всех выборов двух элементов без учета их порядка из n данных» неудобен при постоянном использовании в решении задач. Математики поступили просто: ввели новый термин и специальное обозначение. Определение 2. число всех выборов двух элементов без учета их порядка из n данных элементов называют числом сочетаний из n элементов по 2 и обозначают (цэ из эн по два).

Пример 5. Встретились 11 футболистов и 6 хоккеистов и каждый стал по одному разу играть с каждым в шашки, которые они «давненько не брали в руки». Сколько встреч было: а)между футболистами; б)между хоккеистами; в)между футболистами и хоккеистами; г)всего?
Слайд 28

Пример 5.

Встретились 11 футболистов и 6 хоккеистов и каждый стал по одному разу играть с каждым в шашки, которые они «давненько не брали в руки». Сколько встреч было: а)между футболистами; б)между хоккеистами; в)между футболистами и хоккеистами; г)всего?

РЕШЕНИЕ: а) б) в) Будем действовать по правилу умножения. Одно испытание – выбор футболиста, а другое испытание – выбор хоккеиста. Испытания предполагаются независимыми, и у них соответственно 11 и 6 исходов. Значит получится 116=66 игр. г) Можно сложить все предыдущие ответы: 55+15+66=136; но можн
Слайд 29

РЕШЕНИЕ:

а) б) в) Будем действовать по правилу умножения. Одно испытание – выбор футболиста, а другое испытание – выбор хоккеиста. Испытания предполагаются независимыми, и у них соответственно 11 и 6 исходов. Значит получится 116=66 игр. г) Можно сложить все предыдущие ответы: 55+15+66=136; но можно использовать и формулу для числа сочетаний:

Теорема 3 и определение 3. А что получится, если мы будем учитывать порядок двух выбираемых элементов? По правилу умножения получаем следующую теорему. Теорема 3. Если множество состоит из n элементов и требуется выбрать из них два элемента, учитывая их порядок, то такой выбор можно произвести n(n-1
Слайд 30

Теорема 3 и определение 3

А что получится, если мы будем учитывать порядок двух выбираемых элементов? По правилу умножения получаем следующую теорему. Теорема 3. Если множество состоит из n элементов и требуется выбрать из них два элемента, учитывая их порядок, то такой выбор можно произвести n(n-1) способами. Доказательство: Первый по порядку элемент можно выбрать n способами. Из оставшихся (n-1) элементов второй по порядку элемент можно выбрать (n-1) способом. Так как два этих испытания (выбора) независимы друг от друга, то по правилу умножения получаем n(n-1). Определение 3. Число всех выборов двух элементов с учетом их порядка из n данных называют числом размещений из n элементов по 2 и обозначают

Пример 6. В классе 27 учеников. К доске нужно вызвать двоих. Сколькими способами это можно сделать, если: а) первый ученик должен решить задачу по алгебре, а второй — по геометрии; б) они должны быстро стереть с доски?
Слайд 31

Пример 6

В классе 27 учеников. К доске нужно вызвать двоих. Сколькими способами это можно сделать, если: а) первый ученик должен решить задачу по алгебре, а второй — по геометрии; б) они должны быстро стереть с доски?

Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I Слайд: 32
Слайд 32
Итоги выборов двух элементов. А как будут выглядеть формулы, если в них верхний индекс 2 заменить на 3, 4, … и вообще на произвольное число k, 1≤k ≤n? Здесь мы переходим к основному вопросу параграфа – к выборам, состоящим из произвольного числа элементов.
Слайд 33

Итоги выборов двух элементов

А как будут выглядеть формулы, если в них верхний индекс 2 заменить на 3, 4, … и вообще на произвольное число k, 1≤k ≤n? Здесь мы переходим к основному вопросу параграфа – к выборам, состоящим из произвольного числа элементов.

Источники. Алгебра и начала анализа, 10-11 классы, Часть 1. Учебник, 10-е изд. (Базовый уровень), А.Г.Мордкович, М., 2009 Алгебра и начала анализа, 10-11 классы. (Базовый уровень) Методическое пособие для учителя, А.Г.Мордкович, П.В.Семенов, М., 2010 Таблицы составлены в MS Word и MS Excel. Интернет
Слайд 34

Источники

Алгебра и начала анализа, 10-11 классы, Часть 1. Учебник, 10-е изд. (Базовый уровень), А.Г.Мордкович, М., 2009 Алгебра и начала анализа, 10-11 классы. (Базовый уровень) Методическое пособие для учителя, А.Г.Мордкович, П.В.Семенов, М., 2010 Таблицы составлены в MS Word и MS Excel. Интернет-ресурсы

Список похожих презентаций

«Метод математической индукции»

«Метод математической индукции»

В основе математического исследования лежит. Дедуктивный метод. Индуктивный метод. Дедуктивный метод – это рассуждение, исходным моментом которого ...
«Основы теории вероятности»

«Основы теории вероятности»

В современном мире автоматизации производства теория вероятности(Т.В) необходима специалистам для решения задач, связанных с выявлением возможного ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
«Решение задания С1 ЕГЭ по информатике и ИКТ»

«Решение задания С1 ЕГЭ по информатике и ИКТ»

2 балла. Решение задания С1 ЕГЭ по информатике и ИКТ.  Кунина В.В. область I  область II. 0 x y y = x+2 y2 + x2 = 25 y2 + x2  25 y  0 x  0 область ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...

Конспекты

Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Биквадратное уравнение и его корни

Биквадратное уравнение и его корни

Учитель математики Апенькина Наталья Александровна. Конспект урока. Класс – 8. Тема – «Биквадратное уравнение и его корни». Цели урока: . образовательная:. ...
Без слов и грамматики не учат математике

Без слов и грамматики не учат математике

Интегрированный (бинарный) урок по русскому языку и геометрии в 7 классе. ТЕМА УРОКА: «Без слов и грамматики не учат математике». ТИП УРОКА: ...
Арифметический квадратный корень из произведения, степени и дроби

Арифметический квадратный корень из произведения, степени и дроби

Тема: «Арифметический квадратный корень из произведения, степени и дроби». Цели урока:. . Образовательные:. изучить основные свойства квадратных ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...
Верные и неверные равенства и неравенства

Верные и неверные равенства и неравенства

Муниципальное бюджетное образовательное учреждение. средняя общеобразовательная школа №1. . города Ярцева Смоленской области. . Конспект ...
Величины (длина, масса, время, объем) и единицы измерения

Величины (длина, масса, время, объем) и единицы измерения

Математика 3-1-8. . Тема урока. :. Величины (длина, масса, время, объем) и единицы. . измерения. Цели:. повторить единицы измерения массы, ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 апреля 2019
Категория:Математика
Содержит:34 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации