- Метод координат на плоскости

Презентация "Метод координат на плоскости" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30

Презентацию на тему "Метод координат на плоскости" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 30 слайд(ов).

Слайды презентации

МЕТОД КООРДИНАТ на плоскости. 1. Координатная ось 2.Прямоугольная система координат на плоскости 3.Расстояния между точками 4.Координаты середины отрезка 5.Определение тригонометрических функций для любого угла 6.Применение координатной плоскости при решении алгебраических задач 7.Применение координ
Слайд 1

МЕТОД КООРДИНАТ на плоскости

1. Координатная ось 2.Прямоугольная система координат на плоскости 3.Расстояния между точками 4.Координаты середины отрезка 5.Определение тригонометрических функций для любого угла 6.Применение координатной плоскости при решении алгебраических задач 7.Применение координатной плоскости при решении геометрических задач

1. Координатная ось. Координатной осью называется прямая, на которой отмечена точка О (начало отсчета или начало координат), выбран масштаб, т.е. указан отрезок единичной длины для измерения расстояний (единичный или масштабный отрезок), и задано положительное направление. Так на рисунке 1 единичный
Слайд 2

1. Координатная ось

Координатной осью называется прямая, на которой отмечена точка О (начало отсчета или начало координат), выбран масштаб, т.е. указан отрезок единичной длины для измерения расстояний (единичный или масштабный отрезок), и задано положительное направление. Так на рисунке 1 единичный отрезок на координатной оси Ох обозначен OE, направление от точки О к точке Е считается положительным (показано стрелкой). Начало координат О делит координатную ось на два луча: положительную полуось (которой принадлежит точка Е) и отрицательную полуось. Координатой точки Р, лежащей на оси Ох, называется число х = ±ОР (где ОР означает длину отрезка ОР), взятое со знаком плюс, если точка Р лежит на положительной полуоси, и со знаком минус, если эта точка лежит на отрицательной полуоси. Координату точку обычно указывают в скобках рядом с обозначением точки: Р (х). Между точками на числовой оси и их координатами имеется взаимно однозначное соответствие. Расстояние между двумя точками Р1 (х1) и Р2(х2) на оси Ох выражается формулой т.е. оно равно модулю разности соответствующих координат.

2. Прямоугольная система координат на плоскости. Прямоугольная (или декартова) система координат на плоскости задается парой взаимно перпендикулярных координатных осей, имеющих общее начало в точке О и одинаковый масштаб (рис.2). Оси координат на плоскости обычно обозначают Ох и Оу (оси абсцисс и	ор
Слайд 3

2. Прямоугольная система координат на плоскости

Прямоугольная (или декартова) система координат на плоскости задается парой взаимно перпендикулярных координатных осей, имеющих общее начало в точке О и одинаковый масштаб (рис.2). Оси координат на плоскости обычно обозначают Ох и Оу (оси абсцисс и ординат соответственно). Координатную плоскость обозначают хОу. Координатные оси делят плоскость хОу на четыре квадранта (или четверти): I, II, III, IV.

Пусть точка Р лежит на плоскости хОу (рис.2). Опустим из этой точки перпендикуляры на координатные оси; основания перпендикуляров обозначим Рх и Ру. Абсциссой точки Р называется координата х точки Рх на оси Ох, ординатой – координата у точки Ру на оси Оу. Координаты точки обычно указывают в скобках
Слайд 4

Пусть точка Р лежит на плоскости хОу (рис.2). Опустим из этой точки перпендикуляры на координатные оси; основания перпендикуляров обозначим Рх и Ру. Абсциссой точки Р называется координата х точки Рх на оси Ох, ординатой – координата у точки Ру на оси Оу. Координаты точки обычно указывают в скобках рядом с обозначением точки: Р (х; у). Между точками на плоскости и их координатами имеется взаимно однозначное соответствие.

Рассмотрим пример. Известны координаты пятнадцати точек: 1(4,1); 2(4,2); 3(1,2); 4(4,5); 5(2,5); 6(4,7); 7(3,7); 8(5,9); 9(7,7); 10(6,7); 11(8,5); 12(6,5); 13(9,2); 14(6,2); 15(6,1). Если отметить эти точки на координатной плоскости, а затем соединить их отрезками в последовательности 1-2-3-4-5-6-7-
Слайд 5

Рассмотрим пример

Известны координаты пятнадцати точек: 1(4,1); 2(4,2); 3(1,2); 4(4,5); 5(2,5); 6(4,7); 7(3,7); 8(5,9); 9(7,7); 10(6,7); 11(8,5); 12(6,5); 13(9,2); 14(6,2); 15(6,1). Если отметить эти точки на координатной плоскости, а затем соединить их отрезками в последовательности 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-1, то получим рисунок:

Задача 1. Даны точки A(0; - 2), B(- 2;1), C(0;0) и D(2; - 9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0. Решение Уравнению прямой удовлетворяют координаты только точки B, т.к. 2(-2)- 3(1)+7=0, -4-3+7=0, 0=0
Слайд 6

Задача 1

Даны точки A(0; - 2), B(- 2;1), C(0;0) и D(2; - 9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0. Решение Уравнению прямой удовлетворяют координаты только точки B, т.к. 2(-2)- 3(1)+7=0, -4-3+7=0, 0=0

3. Расстояние между точками. Пусть на плоскости хОу даны две точки: A1с координатами(x1;y1;) , и A2 с координатами(x2;y2) , . Выразим расстояние между точками и А через координаты этих точек. Рис.3 Рассмотрим сначала случай, когда х ≠ х1 и у ≠ у1. Проведем через точки А и А2прямые, параллельные осям
Слайд 7

3. Расстояние между точками

Пусть на плоскости хОу даны две точки: A1с координатами(x1;y1;) , и A2 с координатами(x2;y2) , . Выразим расстояние между точками и А через координаты этих точек. Рис.3 Рассмотрим сначала случай, когда х ≠ х1 и у ≠ у1. Проведем через точки А и А2прямые, параллельные осям координат , и обозначим точку их пересечения буквой А (рис.3). Расстояние между точками А и А 1 равно ׀у2-у 1 ׀, а расстояние между точками А и А 2 равно ׀х1-х 2 ׀. Применяя к прямоугольному треугольнику АА1А2 теорему Пифагора, получим: , откуда 1) , где d – расстояние между точками А и А.

Хотя формула (1) для расстояния между точками выведена нами в предположении х ≠ х1, у ≠ у 1, она остается верной и в других случаях. Действительно, если х = х 1, у ≠ у 1, то d равно ׀у – у 1 ׀. Тот же результат дает формула (1). Аналогично рассматривается случай, когда х ≠ х 1, у = у 1. При х = х 1,
Слайд 8

Хотя формула (1) для расстояния между точками выведена нами в предположении х ≠ х1, у ≠ у 1, она остается верной и в других случаях. Действительно, если х = х 1, у ≠ у 1, то d равно ׀у – у 1 ׀. Тот же результат дает формула (1). Аналогично рассматривается случай, когда х ≠ х 1, у = у 1. При х = х 1, у = у 1 точки А и А 1 совпадают и формула (1) дает d = 0.

Задача 2. Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности. Решение Подставив координаты данных точек в левую часть уравнения данной окружности, найдём квадраты расстояний от данных точ
Слайд 9

Задача 2

Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности. Решение Подставив координаты данных точек в левую часть уравнения данной окружности, найдём квадраты расстояний от данных точек до центра Q(1; - 3) окружности: QA2 = (0 - 1) 2 + (0 + 3) 2 = 10 25, QD2 = (2 - 1) 2 + (- 1 + 3) 2 = 5

Задача 3. Найти расстояние между точками А (-1; -2) и В (-4; 2). Решение. По формуле (1) имеем:
Слайд 10

Задача 3

Найти расстояние между точками А (-1; -2) и В (-4; 2). Решение. По формуле (1) имеем:

4. Координаты середины отрезка. Пусть А (х1;у1) и В (х2;у2) – две произвольные точки и С (х; у) – середина отрезка АВ. Найдем координаты х, у точки С. Рассмотрим сначала случай, когда отрезок АВ не параллелен оси Оу, т.е. х1 ≠ х2. Проведем через точки А, В, С прямые, параллельные оси Оу (рис.4). Они
Слайд 11

4. Координаты середины отрезка

Пусть А (х1;у1) и В (х2;у2) – две произвольные точки и С (х; у) – середина отрезка АВ. Найдем координаты х, у точки С. Рассмотрим сначала случай, когда отрезок АВ не параллелен оси Оу, т.е. х1 ≠ х2. Проведем через точки А, В, С прямые, параллельные оси Оу (рис.4). Они пересекут ось Ох в точках А1 (х1; 0), В1 (х2; 0), С1 (х; 0). По теореме Фалеса (см. Приложение) точка С будет серединой отрезка А1В1.

x= y=

Найдем координаты х, у точки С. Рассмотрим сначала случай, когда отрезок АВ не параллелен оси Оу, т.е. х ≠ х. Проведем через точки А, В, С прямые, параллельные оси Оу (рис.4). Они пересекут ось Ох в точках А1 (х1; 0), В1 (х2; 0), С1 (х; 0). По теореме Фалеса (см. Приложение 7) точка С1 будет середин
Слайд 12

Найдем координаты х, у точки С. Рассмотрим сначала случай, когда отрезок АВ не параллелен оси Оу, т.е. х ≠ х. Проведем через точки А, В, С прямые, параллельные оси Оу (рис.4). Они пересекут ось Ох в точках А1 (х1; 0), В1 (х2; 0), С1 (х; 0). По теореме Фалеса (см. Приложение 7) точка С1 будет серединой отрезка А1В1. Так как точка С1 – середина отрезка А1В1, то А1С1 = С1В1. при выбранном расположении точек имеем: А1С1 = х – х1, С1В1 = х – х1 И, значит, х – х1= х – х2, откуда 2) Аналогично получим: 3)

Основные формулы
Слайд 13

Основные формулы

Задача 4. Даны две вершины параллелограмма АВСD: А (0; 1) , С (3; 2). Найти координаты точки пересечения диагоналей. Решение. Точка пересечения диагоналей является серединой отрезка АС и имеет координаты:
Слайд 14

Задача 4

Даны две вершины параллелограмма АВСD: А (0; 1) , С (3; 2). Найти координаты точки пересечения диагоналей. Решение. Точка пересечения диагоналей является серединой отрезка АС и имеет координаты:

Задача 5. Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC Решение.. Первый способ Координаты середины K(x0;y0) диагонали BC параллелограмма ABMC есть средние арифметические соответствующих координат концов отрезка BC, т.е. x0 = = - 1, y0 = = 0. Посколь
Слайд 15

Задача 5

Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC Решение.. Первый способ Координаты середины K(x0;y0) диагонали BC параллелограмма ABMC есть средние арифметические соответствующих координат концов отрезка BC, т.е. x0 = = - 1, y0 = = 0. Поскольку диагонали параллелограмма делятся точкой пересечения пополам, то K(x0;y0) — середина отрезка с концами в точках A(- 6; - 1) и M(x1;y1). Поэтому x0 = = - 1, y0 = = 0. Отсюда находим, что x1 = 4, y1 = 1. Второй способ.. Пусть x1, y1 — координаты точки M. Если ABMC — параллелограмм, то , а т.к. то x1 - 1 = 3, y1 - 2 = - 1. Отсюда находим, что x1 = 4, y1 = 1. Ответ: M(4;1).

5. Определение тригонометрических функций для любого угла от 0° до 180°. До сих пор значение синуса, косинуса и тангенса были определены только для острых углов. Теперь мы определим их для любого угла от 0° до 180°. Возьмем окружность на плоскости хОу с центром в начале координат и радиусом R (рис.6
Слайд 16

5. Определение тригонометрических функций для любого угла от 0° до 180°

До сих пор значение синуса, косинуса и тангенса были определены только для острых углов. Теперь мы определим их для любого угла от 0° до 180°. Возьмем окружность на плоскости хОу с центром в начале координат и радиусом R (рис.6). Пусть α – острый угол, который образует радиус ОА с положительной полуосью Ох. Пусть х и у – координаты точки А. Значение sin α и tg α для острого угла α выражаются через координаты точки А, а именно: sinα = , cosα = , tgα =

Определим теперь значения sin α, cos α и tg α для любого угла α. (Для tg α угол α = 90° исключается). Имеем: sin 90° = = 1, cos90° = = 0, sin180° = 0, cos180° =- = -1 Считая, что совпадающие лучи образуют угол 0°, будем иметь: sin0° = 0, cos0° = 1, tg0° = 0 Теорема: Для любого угла α, 0°
Слайд 17

Определим теперь значения sin α, cos α и tg α для любого угла α. (Для tg α угол α = 90° исключается). Имеем: sin 90° = = 1, cos90° = = 0, sin180° = 0, cos180° =- = -1 Считая, что совпадающие лучи образуют угол 0°, будем иметь: sin0° = 0, cos0° = 1, tg0° = 0 Теорема: Для любого угла α, 0°

Задача 6. Вычислить: 1) sin 135°; 2) cos 135°; 3) 150° Решение. Согласно только что доказанной теореме sin 135° = sin (180°- 45°) = sin 45°; cos 135° = cos (180° - α) = -cos 45°; tg 150° = tg (180° - α) = -tg 30° Но sin 45° = √2/2, cos 45° = √2/2 , tg 30° = √3/3 Следовательно, sin 135° = √2/2, cos 1
Слайд 18

Задача 6

Вычислить: 1) sin 135°; 2) cos 135°; 3) 150° Решение. Согласно только что доказанной теореме sin 135° = sin (180°- 45°) = sin 45°; cos 135° = cos (180° - α) = -cos 45°; tg 150° = tg (180° - α) = -tg 30° Но sin 45° = √2/2, cos 45° = √2/2 , tg 30° = √3/3 Следовательно, sin 135° = √2/2, cos 135° = - √2/2, tg 135° = - √3/3

6. Применение координатной плоскости при решении алгебраических задач. Задача 7 Изобразите на координатной плоскости множество точек, удовлетворяющих условию: х≥5 Решение: Решению неравенства удовлетворяет область, закрашенная розовым цветом
Слайд 19

6. Применение координатной плоскости при решении алгебраических задач

Задача 7 Изобразите на координатной плоскости множество точек, удовлетворяющих условию: х≥5 Решение: Решению неравенства удовлетворяет область, закрашенная розовым цветом

Задача 8. Покажите на координатной плоскости множество точек, которое задается неравенством Решение: Множество точек плоскости, удовлетворяющих данному неравенству, выделено на рисунке 8 серым цветом.
Слайд 20

Задача 8

Покажите на координатной плоскости множество точек, которое задается неравенством Решение: Множество точек плоскости, удовлетворяющих данному неравенству, выделено на рисунке 8 серым цветом.

Задача 9. На рисунке изображено некоторое множество точек. Из двух неравенств выберете то, которому оно соответствует и . Решение Множество точек изображенных на рисунке СЕРЫМ ЦВЕТОМ , соответсвует неравенству
Слайд 21

Задача 9

На рисунке изображено некоторое множество точек. Из двух неравенств выберете то, которому оно соответствует и . Решение Множество точек изображенных на рисунке СЕРЫМ ЦВЕТОМ , соответсвует неравенству

Задача 10. Постройте какую-нибудь полосу, охватывающую все данные точки на рисунке 10. Каким неравенством ее можно задать? Решение: Решение данной задачи можно увидеть на рис.11, это область образованная пересечением двух областей желтого и синего цвета. Получившуюся область можно задать неравенство
Слайд 22

Задача 10

Постройте какую-нибудь полосу, охватывающую все данные точки на рисунке 10. Каким неравенством ее можно задать?

Решение:

Решение данной задачи можно увидеть на рис.11, это область образованная пересечением двух областей желтого и синего цвета. Получившуюся область можно задать неравенством -9≤у≤10

7. Применение координатной плоскости при решении геометрических задач. Задача 12 .Разложите векторы а, b,c.d по единичным векторам i и j и найдите их координаты. Решение: a=3i-3j b=-5j c=6i=3j d=6i
Слайд 23

7. Применение координатной плоскости при решении геометрических задач

Задача 12 .Разложите векторы а, b,c.d по единичным векторам i и j и найдите их координаты. Решение: a=3i-3j b=-5j c=6i=3j d=6i

Задача 11. Решить графически систему уравнений Решение:Графиком уравнения х2+у2=25 является окружность с центром в начале координат и радиусом, Равным5. Графиком уравнения ху=12 является Гипербола у=12:х. Построив графики в одной системе координат (рис.11), найдём координаты точек А, В, С, Д пересеч
Слайд 24

Задача 11

Решить графически систему уравнений Решение:Графиком уравнения х2+у2=25 является окружность с центром в начале координат и радиусом, Равным5. Графиком уравнения ху=12 является Гипербола у=12:х. Построив графики в одной системе координат (рис.11), найдём координаты точек А, В, С, Д пересечения окружности и гиперболы: А(4; 3), В(3; 4), С(-4; -3), Д(-3; -4). Значит, решения заданной системы таковы: (4;3), (3;4), (-4;-3), (-3; -4).

Задача 13. На координатной плоскости заданы точки A(1;3), B(1;9), C(6;8) и E(5;1). Найдите площадь пятиугольника ABCDE, где D — точка пересечения прямых AC и BE. Решение Если y1y2 и x1x2, то уравнение прямой, проходящей через точки (x1;y1) и (x2;y2), имеет вид = Ответ:21
Слайд 25

Задача 13

На координатной плоскости заданы точки A(1;3), B(1;9), C(6;8) и E(5;1). Найдите площадь пятиугольника ABCDE, где D — точка пересечения прямых AC и BE. Решение Если y1y2 и x1x2, то уравнение прямой, проходящей через точки (x1;y1) и (x2;y2), имеет вид = Ответ:21

Задача 14. На координатной плоскости (x;y) проведена окружность радиуса 4 с центром в начале координат. Прямая, заданная уравнением y = 4 - (2 - )x, пересекает её в точках A и B. Найдите сумму длин отрезка AB и меньшей дуги AB.
Слайд 26

Задача 14

На координатной плоскости (x;y) проведена окружность радиуса 4 с центром в начале координат. Прямая, заданная уравнением y = 4 - (2 - )x, пересекает её в точках A и B. Найдите сумму длин отрезка AB и меньшей дуги AB.

Решение. Решив систему уравнений Найдем координаты точек пересечения прямой и окружности: А(0;4), В(2,2;). Тогда, АВ = Пусть О- начало координат. По теореме косинусов из треугольника АОB находим, что cos∕AOB= . Поэтому градусная мера меньшей дуги АВ равна 300.Длина этой дуги равна одной двенадцатой
Слайд 27

Решение

Решив систему уравнений Найдем координаты точек пересечения прямой и окружности: А(0;4), В(2,2;). Тогда, АВ = Пусть О- начало координат. По теореме косинусов из треугольника АОB находим, что cos∕AOB= . Поэтому градусная мера меньшей дуги АВ равна 300.Длина этой дуги равна одной двенадцатой длины окружности радиуса 4, т.е. . . Следовательно, искомая сумма равна +4 Ответ: +4

Задача 15. На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.
Слайд 28

Задача 15

На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.

Решим задачу координатным методом. Введём систему координат таким образом, чтобы A находилась в начале координат, а B имела координаты (1;0) . Пусть точка M(x,y) – искомая. Тогда 1/3=MB/MA= . Отсюда получаем x2+y2=9((x-1) 2+y2 , 8x2-18x+8(x- ) 2+y2( )2- . Получили уравнение окружности. Следовательно
Слайд 29

Решим задачу координатным методом. Введём систему координат таким образом, чтобы A находилась в начале координат, а B имела координаты (1;0) . Пусть точка M(x,y) – искомая. Тогда 1/3=MB/MA= . Отсюда получаем x2+y2=9((x-1) 2+y2 , 8x2-18x+8(x- ) 2+y2( )2- . Получили уравнение окружности. Следовательно, все точки M данного множества лежат на окружности. Далее, так как все наши преобразования были равносильными, то любая точка, лежащая на окружности, заданной получившимся уравнением, будет принадлежать данному множеству. y2+9=0 , x2- x+y2+ =0; x2-2· x+( )2+y2+ -( )2=0;

Список похожих презентаций

Астрономия на координатной плоскости

Астрономия на координатной плоскости

Цели урока:. Закрепить полученные знания и навыки. Проявить творчество при изучении данного раздела. Избежать трудностей при изучении темы «Функция» ...
Алгоритмы работы на координатной плоскости

Алгоритмы работы на координатной плоскости

Цели:. Формировать умение работать на координатной плоскости как с положительными, так и отрицательными координатами. Развивать алгоритмическое мышление. ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
введение декартовых координат в пространстве

введение декартовых координат в пространстве

Рене Декарт. x y z 0 1 Ox  Oy  Oz Ox – ось абсцисс Oy – ось ординат Oz – ось аппликат Координатные оси:. Выберем в пространстве три попарно перпендикулярные ...
Взаимное расположение прямой и окружности на плоскости

Взаимное расположение прямой и окружности на плоскости

Прямая и окружность пересекаются. d R. d- расстояние от центра окружности до прямой R- радиус окружности. О А В d. Прямая и окружность касаются. d=R. ...
Векторы на плоскости

Векторы на плоскости

Аналитическая геометрия. Алгебраические поверхности и линии на плоскости первого порядка. Опр. Геометрическое место точек в пространстве (на плоскости) ...
Взаимное расположение прямых на плоскости

Взаимное расположение прямых на плоскости

Цели:. Обобщить знания о прямых на плоскости из алгебры и геометрии 7 класса. Выяснить взаимное расположение прямых, заданных уравнением y=kx+b в ...
Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
"Разрезание геометрических фигур на части"

"Разрезание геометрических фигур на части"

ЗАДАЧИ НА РАЗРЕЗАНИЯ. Теорема Бойяи-Гервина гласит: любой многоугольник можно так разрезать на части, что из этих частей удастся сложить квадрат. ...
Арифметика Л.Ф. Магницкого. Задачи на сплавы и смеси

Арифметика Л.Ф. Магницкого. Задачи на сплавы и смеси

Цели моей работы. Познакомиться с биографией Леонтия Филипповича Магницкого Научиться решать задачи на сплавы, находить процентное содержание веществ ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Влияние коэффициентов на расположение параболы

Влияние коэффициентов на расположение параболы

Цель:. Исследовать зависимость свойств параболы от ее коэффициентов. Задачи:. Выяснить закономерность расположения вершин параболы. Рассмотреть некоторые ...
«Задачи на проценты»

«Задачи на проценты»

Тема урока: Проценты. Тип урока: урок обобщения и систематизации знаний. Цели урока: Образовательные: Обобщение и систематизация знаний учащихся о ...
«Старая сказка на новый лад»

«Старая сказка на новый лад»

3 268 :2 12 396:3 256 130:5 1634 51226. Полетели стрелы в разные стороны. Упала стрела царевича на царский двор. 1634 м. Стрела второго царевича улетела ...
Введение понятий "больше‒меньше" на числовом луче

Введение понятий "больше‒меньше" на числовом луче

1 0 5 меньше левее. 8 больше правее. 3 3 < 5 < 8 8 > 5 > 3. 3 + 5 =. . . ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...

Конспекты

Астрономия на координатной плоскости

Астрономия на координатной плоскости

Леткова Татьяна Викторовна,. учитель математики. Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа ...
Декартовы координаты на плоскости

Декартовы координаты на плоскости

Обобщающий урок по геометрии "Декартовы координаты на плоскости". . Цель урока:. . . истематизировать и обобщить теоретический материал ...
Вывод формул для вычисления координат вершины параболы

Вывод формул для вычисления координат вершины параболы

Нагаева Светлана Николаевна, учитель математики МАОУ « Лицей №1» города Березники. Проект. урока по алгебре в 9 классе. (гуманитарный профиль). ...
Векторы на плоскости

Векторы на плоскости

. Конспект. обобщающего урока по теме «Векторы на плоскости». . (геометрия 9 класс). Тема. Систематизация и обобщение изученного материала ...
Деление и умножение суммы на число

Деление и умножение суммы на число

Спресова Наталья Николаевна. Муниципальное общеобразовательное учреждение: средняя общеобразовательная школа, с.Нялинское Ханты-Мансийского района ...
Деление десятичных дробей на натуральные числа

Деление десятичных дробей на натуральные числа

МБОУ СОШ № 162. Открытый урок по математике в 5 классе. по теме « Деление десятичных дробей на натуральные числа. Учитель: Титкова Наталья ...
Деление десятичной дроби на натуральное число

Деление десятичной дроби на натуральное число

Азарова Лидия Васильевна, учитель математики МБОУ Михейковская СОШ. Тема:. «Деление десятичной дроби на натуральное число». Класс:. 5. . Тип ...
Деление десятичной дроби на десятичную дробь

Деление десятичной дроби на десятичную дробь

Урок математики для 5 класса на тему «Деление десятичной дроби на десятичную дробь». План-конспект урока математики в 5 классе по теме "Деление ...
Алгоритм решения задачи на нахождение целого и частей

Алгоритм решения задачи на нахождение целого и частей

. Тимошенкова. Ирина Викторовна. Учитель начальных классов. МБ НОУ «Гимназия № 70». Г. Новокузнецк. Алгоритм. решения задачи. ...
Деление многозначного числа на однозначное число

Деление многозначного числа на однозначное число

Тема урока:. Деление многозначного числа на однозначное число. . . Цель:. Систематизировать знания по теме «Деление многозначного числа на однозначное». ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:19 ноября 2018
Категория:Математика
Содержит:30 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации