- Метод Гаусса и Крамера

Презентация "Метод Гаусса и Крамера" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25

Презентацию на тему "Метод Гаусса и Крамера" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 25 слайд(ов).

Слайды презентации

Матрицы. Метод Гаусса Формулы Крамера. Подготовили: Климов Дмитрий Радзевич Павел Руководитель: Петрова Л.Д. учитель математики
Слайд 1

Матрицы

Метод Гаусса Формулы Крамера

Подготовили: Климов Дмитрий Радзевич Павел Руководитель: Петрова Л.Д. учитель математики

Содержание. Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер Метод Крамера Вывод Использованные источники информации
Слайд 2

Содержание

Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер Метод Крамера Вывод Использованные источники информации

Матрица Определение. Прямоугольная таблица из m, n чисел, содержащая m – строк и n – столбцов, вида: называется матрицей размера m  n Числа, из которых составлена матрица, называются элементами матрицы. Положение элемента аi j в матрице характеризуются двойным индексом: первый i – номер строки; вто
Слайд 3

Матрица Определение

Прямоугольная таблица из m, n чисел, содержащая m – строк и n – столбцов, вида: называется матрицей размера m  n Числа, из которых составлена матрица, называются элементами матрицы. Положение элемента аi j в матрице характеризуются двойным индексом: первый i – номер строки; второй j – номер столбца, на пересечении которых стоит элемент. Сокращенно матрицы обозначают заглавными буквами: А, В, С… Коротко можно записывать так:

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген) Биография. Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писа
Слайд 4

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген) Биография

Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат 50х101=5050 . После 1801 года Гаусс включил в круг своих интересов естественные науки. Катализатором послужило открытие малой планеты Церера ,вскоре после наблюдений потерянной. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления по новому, открытому им же методу, и указал место, где искать беглянку; там она, к общему восторгу, и была вскоре обнаружена. Умер Гаусс 23 февраля 1855 года в Гёттингене.

Метод Гаусса. Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого посл
Слайд 5

Метод Гаусса

Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные. Система т линейных уравнений с п неизвестными имеет вид: x1 , x2, …, xn – неизвестные. ai j - коэффициенты при неизвестных. bi - свободные члены (или правые части)

Типы уравнений. Система линейных уравнений называется совместной, если она имеет решение, и несовместной, если она не имеет решения. Совместная система называется определенной, если она имеет единственное решение и неопределенной, если она имеет бесчисленное множество решений. Две совместные системы
Слайд 6

Типы уравнений

Система линейных уравнений называется совместной, если она имеет решение, и несовместной, если она не имеет решения. Совместная система называется определенной, если она имеет единственное решение и неопределенной, если она имеет бесчисленное множество решений. Две совместные системы называются равносильными, если они имеют одно и то же множество решений.

Элементарные преобразования. К элементарным преобразованиям системы отнесем следующее: перемена местами двух любых уравнений; умножение обеих частей любого из уравнений на произвольное число, отличное от нуля; прибавление к обеим частям одного из уравнений системы соответствующих частей другого урав
Слайд 7

Элементарные преобразования

К элементарным преобразованиям системы отнесем следующее: перемена местами двух любых уравнений; умножение обеих частей любого из уравнений на произвольное число, отличное от нуля; прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.

Общий случай. Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение: Дана система: 1-ый шаг метода Гаусса На первом шаге исключим неизвестное х1 из всех уравнений системы (1), кроме первого. Пусть коэффициент . Н
Слайд 8

Общий случай

Для простоты рассмотрим метод Гаусса для системы трех линейных уравнений с тремя неизвестными в случае, когда существует единственное решение: Дана система: 1-ый шаг метода Гаусса На первом шаге исключим неизвестное х1 из всех уравнений системы (1), кроме первого. Пусть коэффициент . Назовем его ведущим элементом. Разделим первое уравнение системы (1) на а11. Получим уравнение: где Исключим х1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при х1 (соответственно а21 и а31). Система примет вид: Верхний индекс (1) указывает, что речь идет о коэффициентах первой преобразованной системы.

(1) (2) (3)

2-ой шаг метода Гаусса На втором шаге исключим неизвестное х2 из третьего уравнения системы (3). Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе уравнение системы (3), получим уравнение: где Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на Получим ур
Слайд 9

2-ой шаг метода Гаусса На втором шаге исключим неизвестное х2 из третьего уравнения системы (3). Пусть коэффициент . Выберем его за ведущий элемент и разделим на него второе уравнение системы (3), получим уравнение: где Из третьего уравнения системы (3) вычтем уравнение (4), умноженное на Получим уравнение: Предполагая, что находим

(4)

В результате преобразований система приняла вид: Система вида (5) называется треугольной. Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2) называют прямым ходом метода Гаусса. Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса. Для этого найденное
Слайд 10

В результате преобразований система приняла вид: Система вида (5) называется треугольной. Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2) называют прямым ходом метода Гаусса. Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса. Для этого найденное значение х3 подставляют во второе уравнение системы (5) и находят х2. Затем х2 и х3 подставляют в первое уравнение и находят х1.

(5)

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b, где b  0, то это означает, что система несовместна и решений не имеет. В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными
Слайд 11

Если в ходе преобразований системы получается противоречивое уравнение вида 0 = b, где b  0, то это означает, что система несовместна и решений не имеет. В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система т линейных уравнений с п неизвестными будет приведена или к треугольному или к ступенчатому виду. Треугольная система имеет вид: Такая система имеет единственное решение, которое находится в результате проведения обратного хода метода Гаусса. Ступенчатая система имеет вид: Такая система имеет бесчисленное множество решений.

Рассмотрим на примере. Покажем последовательность решения системы из трех уравнений методом Гаусса Поделим первое уравнение на 2, затем вычтем его из второго (a21=1, поэтому домножение не требуется) и из третьего, умножив предварительно на a31=3 Поделим второе уравнение полученной системы на 2, а за
Слайд 12

Рассмотрим на примере

Покажем последовательность решения системы из трех уравнений методом Гаусса Поделим первое уравнение на 2, затем вычтем его из второго (a21=1, поэтому домножение не требуется) и из третьего, умножив предварительно на a31=3 Поделим второе уравнение полученной системы на 2, а затем вычтем его из третьего, умножив предварительно на 4,5 (коэффициент при x2) Тогда

x3=-42/(-14)=3; x2=8-2x3=2 x1=8-0,5x2-2x3=1

Метод Крамера. Метод Крамера—способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году.
Слайд 13

Метод Крамера

Метод Крамера—способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году.

Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция) Биография. Крамер родился в семье франкоязычного врача. В 18 лет защитил диссертацию. В 20-летнем возрасте Крамер выставил свою кандидатуру на вакантную должность преподавателя на кафедре философии Женевского у
Слайд 14

Габриэль Крамер (31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция) Биография

Крамер родился в семье франкоязычного врача. В 18 лет защитил диссертацию. В 20-летнем возрасте Крамер выставил свою кандидатуру на вакантную должность преподавателя на кафедре философии Женевского университета. 1727: Крамер 2 года путешествовал по Европе, заодно перенимая опыт у ведущих математиков — Иоганна Бернулли и Эйлера,Галлея и де Муавра, Мопертюи и Клеро. В свободное от преподавания время Крамер пишет многочисленные статьи на самые разные темы: геометрия, история математики, философия, приложения теории вероятностей. 1751: Крамер получает серьёзную травму после дорожного инцидента с каретой. Доктор рекомендует ему отдохнуть на французском курорте, но там его состояние ухудшается, и 4 января 1752 года Крамер умирает.

Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных: a11x1+a12x2+…+a1nxn=b1 a21x1+a22x2+…+a2nxn=b2 … … an1x1+an2x2+…+annxn=bn. Теорема. Cистема
Слайд 15

Рассмотрим систему линейных уравнений с квадратной матрицей A , т.е. такую, у которой число уравнений совпадает с числом неизвестных:

a11x1+a12x2+…+a1nxn=b1 a21x1+a22x2+…+a2nxn=b2 … … an1x1+an2x2+…+annxn=bn

Теорема. Cистема

Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: a11 a12 … a1n a21 a22 … a2n … … an1 an2 … ann. ≠ 0
Слайд 16

Имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля:

a11 a12 … a1n a21 a22 … a2n … … an1 an2 … ann

≠ 0

В этом случае решение можно вычислить по формуле Крамера
Слайд 17

В этом случае решение можно вычислить по формуле Крамера

Для получения значения xk в числитель ставится определитель, получающийся из det(A) заменой его k-го столбца на столбец правых частей. Пример. Решить систему уравнений :
Слайд 18

Для получения значения xk в числитель ставится определитель, получающийся из det(A) заменой его k-го столбца на столбец правых частей

Пример. Решить систему уравнений :

Решение.
Слайд 19

Решение.

Найдите оставшиеся компоненты решения. Формулы Крамера не представляют практического значения в случае систем с числовыми коэффициентами: вычислять по ним решения конкретных систем линейных уравнений неэффективно, поскольку они требуют вычисления (n+1)-го определителя порядка n , в то время как мето
Слайд 20

Найдите оставшиеся компоненты решения.

Формулы Крамера не представляют практического значения в случае систем с числовыми коэффициентами: вычислять по ним решения конкретных систем линейных уравнений неэффективно, поскольку они требуют вычисления (n+1)-го определителя порядка n , в то время как метод Гаусса фактически эквивалентен вычислению одного определителя порядка n . Тем не менее, теоретическое значение формул Крамера заключается в том, что они дают явное представление решения системы через ее коэффициенты. Например, с их помощью легко может быть доказан результат Решение системы линейных уравнений с квадратной матрицей A является непрерывной функцией коэффициентов этой системы при условии, что det A не равно 0 .

Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. зависящей от параметра , определить предел отношения компонент решения:
Слайд 21

Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. зависящей от параметра , определить предел отношения компонент решения:

В этом примере определитель матрицы системы равен . По теореме Крамера система совместна при . Для случая применением метода Гаусса убеждаемся, что система несовместна. Тем не менее, указанный предел существует. Формулы Крамера дают значения компонент решения в виде. и, хотя при каждая из них имеет
Слайд 22

В этом примере определитель матрицы системы равен . По теореме Крамера система совместна при . Для случая применением метода Гаусса убеждаемся, что система несовместна. Тем не менее, указанный предел существует. Формулы Крамера дают значения компонент решения в виде

и, хотя при каждая из них имеет бесконечный предел, их отношение стремится к пределу конечному.

Ответ. Приведенный пример поясняет также каким образом система линейных уравнений, непрерывно зависящая от параметра, становится несовместной: при стремлении параметра к какому-то критическому значению (обращающему в нуль определитель матрицы системы) хотя бы одна из компонент решения «уходит на бес
Слайд 23

Ответ.

Приведенный пример поясняет также каким образом система линейных уравнений, непрерывно зависящая от параметра, становится несовместной: при стремлении параметра к какому-то критическому значению (обращающему в нуль определитель матрицы системы) хотя бы одна из компонент решения «уходит на бесконечность».

Вывод. Рассмотренный в данной презентации Метод Крамера позволяет решать линейные системы, но удобнее решать системы линейных уравнений с помощью метода Гаусса, который находит широкое применение и содержится в пакетах стандартных программ для ЭВМ.
Слайд 24

Вывод

Рассмотренный в данной презентации Метод Крамера позволяет решать линейные системы, но удобнее решать системы линейных уравнений с помощью метода Гаусса, который находит широкое применение и содержится в пакетах стандартных программ для ЭВМ.

Использованные источники. В.С. Щипачев, Высшая математика Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. http://ru.wikipedia.org Волков Е.А. Численные методы. В.Е. Шнейдер и др., Краткий курс высшей математики,том I.
Слайд 25

Использованные источники

В.С. Щипачев, Высшая математика Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. http://ru.wikipedia.org Волков Е.А. Численные методы. В.Е. Шнейдер и др., Краткий курс высшей математики,том I.

Список похожих презентаций

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Активные формы и методы обучения школьников

Активные формы и методы обучения школьников

Ф о р м ы р а б о т ы. индивидуальные парные групповые коллективные. Основные формы проведения факультативных занятий. Лекция Семинар Дискуссия Решение ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:4 ноября 2018
Категория:Математика
Содержит:25 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации