- Методы решений заданий С5. Метод областей в решении задач

Презентация "Методы решений заданий С5. Метод областей в решении задач" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Методы решений заданий С5. Метод областей в решении задач" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

Методы решений заданий С5 (задачи с параметром). Метод областей в решении задач
Слайд 1

Методы решений заданий С5 (задачи с параметром)

Метод областей в решении задач

(«переход» метода интервалов с прямой на плоскость). 1. Область определения 2. Граничные линии 3. Координатная плоскость 4. Знаки в областях 5.Ответ по рисунку. 1. Область определения 2. Корни 3. Ось 4. Знаки на интервалах 5. Ответ. Метод интервалов: Метод областей: Обобщённый метод областей
Слайд 2

(«переход» метода интервалов с прямой на плоскость)

1. Область определения 2. Граничные линии 3. Координатная плоскость 4. Знаки в областях 5.Ответ по рисунку.

1. Область определения 2. Корни 3. Ось 4. Знаки на интервалах 5. Ответ.

Метод интервалов: Метод областей:

Обобщённый метод областей

Решение. На координатной плоскости нарисуем линии, определяемые равенствами х – у = 0 (у = х) и х у - 1= 0 (у = 1/х), которые разбивают плоскость на 6 областей. При х = 1, у = 0 левая часть неравенства равна -1(отрицательна). Ответ: заштрихованные области на рисунке удовлетворяют условию (х – у) (х
Слайд 3

Решение. На координатной плоскости нарисуем линии, определяемые равенствами х – у = 0 (у = х) и х у - 1= 0 (у = 1/х), которые разбивают плоскость на 6 областей.

При х = 1, у = 0 левая часть неравенства равна -1(отрицательна)

Ответ: заштрихованные области на рисунке удовлетворяют условию (х – у) (х у –1) ≥ 0

х у 0 1 - 1

На координатной плоскости изобразите множество точек , координаты которых удовлетворяют неравенству(х – у) (х у –1) ≥ 0

2 4 5 6

Следовательно, в 1 области, содержащей точку (1; 0), левая часть неравенства имеет знак минус, а в остальных областях её знаки чередуются.

Пример для понимания «метода областей»

Граничные линии: Они разбивают плоскость на 8 областей. На координатной плоскости изобразите множество точек, удовлетворяющих неравенству. Ответ: заштрихованные области на рисунке. Область определения неравенства: Проводим граничные линии, с учётом области определения. Определяем знаки на областях п
Слайд 4

Граничные линии:

Они разбивают плоскость на 8 областей

На координатной плоскости изобразите множество точек, удовлетворяющих неравенству

Ответ: заштрихованные области на рисунке.

Область определения неравенства:

Проводим граничные линии, с учётом области определения

Определяем знаки на областях подстановкой в отдельных точках

Метод областей при решении задач с параметрами. Ключ решения: Графический прием. Свойства функций. Параметр – «равноправная» переменная  отведем ему координатную ось т.е. задачу с параметром будем рассматривать как функцию a = f (x ). Общие признаки задач подходящих под рассматриваемый метод. В зад
Слайд 5

Метод областей при решении задач с параметрами

Ключ решения:

Графический прием

Свойства функций

Параметр – «равноправная» переменная  отведем ему координатную ось т.е. задачу с параметром будем рассматривать как функцию a = f (x )

Общие признаки задач подходящих под рассматриваемый метод

В задаче дан один параметр а и одна переменная х

Они образуют некоторые аналитические выражения F (x;a), G (x;a)

Графики уравнений F(x;a)=0,G(x;a)=0 строятся несложно

1. Строим графический образ

2. Пересекаем полученный график прямыми перпендикулярными параметрической оси

3. «Считываем» нужную информацию

Схема решения:

Найти все значения параметра р, при каждом из которых множество решений неравенства (р – х 2 )(р + х – 2) < 0 не содержит ни одного решения неравенства х 2 ≤ 1. Применим обобщенный метод областей. 2) Определим знаки в полученных пяти областях, и укажем решение данного неравенства. 3) Осталось из
Слайд 6

Найти все значения параметра р, при каждом из которых множество решений неравенства (р – х 2 )(р + х – 2) < 0 не содержит ни одного решения неравенства х 2 ≤ 1

Применим обобщенный метод областей.

2) Определим знаки в полученных пяти областях, и укажем решение данного неравенства.

3) Осталось из полученного множества исключить решения неравенства х 2 ≤ 1

По рисунку легко считываем ответ

Ответ: р ≤ 0, р ≥ 3

1) Построим граничные линии

р = 3 р = 0 -1 3 р = х 2 и р = 2 - х

При р ≤ 0, р ≥ 3 в решениях исходного неравенства нет решений неравенства х 2 ≤ 1.

│x│≤ 1, - 1 < x < 1

Сколько решений имеет система. в зависимости от параметра а? -2. Графиком второго уравнения является неподвижная окружность с центром в начале координат и радиусом 1. 4 решения при а = 1 Ответ: решений нет, если 8 решений, если 4 решения, если
Слайд 7

Сколько решений имеет система

в зависимости от параметра а?

-2

Графиком второго уравнения является неподвижная окружность с центром в начале координат и радиусом 1

4 решения при а = 1 Ответ: решений нет, если 8 решений, если 4 решения, если

При каких положительных значениях параметра а, система уравнений имеет ровно четыре решения? и симметрично отображаем относительно оси абсцисс. Второе уравнение задает семейство окружностей с центром (2;0) и радиусом а.
Слайд 8

При каких положительных значениях параметра а, система уравнений имеет ровно четыре решения?

и симметрично отображаем относительно оси абсцисс.

Второе уравнение задает семейство окружностей с центром (2;0) и радиусом а.

Решение. Рассмотрим сумму данных выражений. t 12. Сумма данного выражения равна 1, при пересечении параболы с горизонтальной прямой . По рисунку «считываем» ответ: 5 ≤ а ≤ 12. Пусть сos 2 x + 1= t; t ϵ [1; 2]; тогда уравнение примет вид. При каких значениях параметра а сумма log a (cos 2 x + 1) и lo
Слайд 9

Решение. Рассмотрим сумму данных выражений

t 12

Сумма данного выражения равна 1, при пересечении параболы с горизонтальной прямой . По рисунку «считываем» ответ:

5 ≤ а ≤ 12

Пусть сos 2 x + 1= t; t ϵ [1; 2];

тогда уравнение примет вид

При каких значениях параметра а сумма log a (cos 2 x + 1) и log a (cos 2 x + 5) равна 1 хотя бы при одном значении х?

log a (cos 2 x + 1) + log a (cos 2 x + 5) = 1;

заметим, 0 ≤ cos 2 x ≤ 1

log a (t∙(t + 4)) = 1; откуда

t 2 + 4t = a у = а

Ответ: при всех a  [5;12]

Построим эскизы этих линий и определим из рисунка количество их общих точек. А В С О. Найдите все значения параметра а, при которых количество корней уравнения (5 - а) х 3 – 4 х 2 + х = 0 равно количеству общих точек линий х 2 + у 2 = а 2 и у = 5 - │х - 1│
Слайд 10

Построим эскизы этих линий и определим из рисунка количество их общих точек.

А В С О

Найдите все значения параметра а, при которых количество корней уравнения (5 - а) х 3 – 4 х 2 + х = 0 равно количеству общих точек линий х 2 + у 2 = а 2 и у = 5 - │х - 1│

Запишем первое уравнение в виде х (5 - а) х 2 – 4 х + 1)= 0. Заметим, что х = 0 – корень не зависимо от параметра а. Уравнение (5 - а) х 2 – 4 х + 1 = 0 может иметь 0, 1 или 2 решения в зависимости от параметра а и D = 4(a – 1). а = 5; а = 1
Слайд 11

Запишем первое уравнение в виде х (5 - а) х 2 – 4 х + 1)= 0

Заметим, что х = 0 – корень не зависимо от параметра а. Уравнение (5 - а) х 2 – 4 х + 1 = 0 может иметь 0, 1 или 2 решения в зависимости от параметра а и D = 4(a – 1).

а = 5; а = 1

Список похожих презентаций

Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Арифметическая и геометрическая прогрессии при решении задач

Арифметическая и геометрическая прогрессии при решении задач

с и п о г р я е. ПРОГРЕССИЯ. арифметическая аn+1=аn+ d an= a1+d(n-1). геометрическая bn+1= bn * q bn= b1*qn-1. Арифметическая и геометрическая прогрессии ...
Алгебра высказываний. Решение логических задач

Алгебра высказываний. Решение логических задач

Задача 1: Составьте сложное высказывание в словесной форме из простых, заданных математическим формулировкам:. Высказывание А: «Учащийся Иванов хорошо ...
Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
Бинарный урок геометрии и информатики "Четырехугольники. Решение задач" Лауреат

Бинарный урок геометрии и информатики "Четырехугольники. Решение задач" Лауреат

Проверка домашнего задания. В трапеции АВСD (АD – большее основание) диагональ АС ┴СD и делит ВАD пополам, СDА=60, периметр трапеции – 20 см. Найдите ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
Арифметическая и геометрическая прогрессии в заданиях ГИА

Арифметическая и геометрическая прогрессии в заданиях ГИА

Цели урока: Обобщить и систематизировать знания учащихся по данной теме. Разобрать типичные задания встречающихся в сборниках для подготовки к ГИА. ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Решение задач с помощью пропорций»

«Решение задач с помощью пропорций»

Найти значение Х: Х:3=4:6 5:Х=2:6 7:3=Х:18 Устная работа. Указать вид пропорциональной зависимости:. Какова зависимость пути от времени? Какова зависимость ...
«Решение задач по математике»

«Решение задач по математике»

10 февраля. В классе. Задача условие вопрос решение ответ. Быстро и правильно считать. Правильно записывать решение задачи. Кричать и сердиться, когда ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
Алгоритм решения задач на пропорции

Алгоритм решения задач на пропорции

Эпиграф: «Математика обладает двумя великими сокровищами. Первое-это теорема Пифагора, второе-деление отрезка в крайнем и среднем отношении.» Иоганн ...
Алгоритм решения простых задач

Алгоритм решения простых задач

. ЗАДАЧА условие Вопрос, задание. Работа в парах. 1. Налетело 5 гусей-лебедей, подхватили и унесли братца Иванушку. 2. Печка испекла девять ржаных ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...

Конспекты

Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 июня 2019
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации