Презентация "Степенные ряды" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36

Презентацию на тему "Степенные ряды" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 36 слайд(ов).

Слайды презентации

Степенные ряды Лекции12, 13, 14
Слайд 1

Степенные ряды Лекции12, 13, 14

Функциональные ряды. Ряд, члены которого являются функциями, называется функциональным и обозначается . Если при ряд сходится, то называется точкой сходимости функционального ряда. Определение. Множество значений х, для которых функциональный ряд сходится, называется областью сходимости этого ряда.
Слайд 2

Функциональные ряды

Ряд, члены которого являются функциями, называется функциональным и обозначается . Если при ряд сходится, то называется точкой сходимости функционального ряда. Определение. Множество значений х, для которых функциональный ряд сходится, называется областью сходимости этого ряда.

Пример функционального ряда. Рассмотрим геометрическую прогрессию со знаменателем х: . Геометрическая прогрессия сходится, если ее знаменатель . Тогда она имеет сумму , которая очевидно является функцией от х.
Слайд 3

Пример функционального ряда

Рассмотрим геометрическую прогрессию со знаменателем х: . Геометрическая прогрессия сходится, если ее знаменатель . Тогда она имеет сумму , которая очевидно является функцией от х.

Определение. Ряд называется степенным по степеням х . Ряд является степенным по степеням .
Слайд 4

Определение. Ряд называется степенным по степеням х . Ряд является степенным по степеням .

Интервал сходимости степенного ряда. Для любого степенного ряда существует конечное неотрицательное число R - радиус сходимости - такое, что если , то при ряд сходится, а при расходится. Интервал называется интервалом сходимости степенного ряда. Если , то интервал сходимости представляет собой всю ч
Слайд 5

Интервал сходимости степенного ряда

Для любого степенного ряда существует конечное неотрицательное число R - радиус сходимости - такое, что если , то при ряд сходится, а при расходится. Интервал называется интервалом сходимости степенного ряда. Если , то интервал сходимости представляет собой всю числовую прямую. Если же , то степенной ряд сходится лишь в точке х=0.

Нахождение интервала сходимости по признаку Даламбера. Составим ряд из абсолютных величин членов степенного ряда и найдем интервал, в котором он будет сходиться, Тогда в этом интервале данный степенной ряд будет сходиться абсолютно. Согласно признаку Даламбера , если ,то степенной ряд абсолютно сход
Слайд 6

Нахождение интервала сходимости по признаку Даламбера

Составим ряд из абсолютных величин членов степенного ряда и найдем интервал, в котором он будет сходиться, Тогда в этом интервале данный степенной ряд будет сходиться абсолютно. Согласно признаку Даламбера , если ,то степенной ряд абсолютно сходится для всех х, удовлетворяющих этому условию.

Продолжение. В этом случае ряд будет сходиться внутри интервала (-R,R),где R-это радиус сходимости ряда: . За пределами этого интервала ряд будет расходиться, а на концах интервала, где , требуется дополнительное исследование.
Слайд 7

Продолжение

В этом случае ряд будет сходиться внутри интервала (-R,R),где R-это радиус сходимости ряда: . За пределами этого интервала ряд будет расходиться, а на концах интервала, где , требуется дополнительное исследование.

Примеры. Найти интервал сходимости ряда . Следовательно, ряд сходится абсолютно в интервале (-1,1).
Слайд 8

Примеры

Найти интервал сходимости ряда . Следовательно, ряд сходится абсолютно в интервале (-1,1).

Положим . Тогда получим числовой ряд . Этот ряд расходится (сравните его с гармоническим рядом). Полагая x = -1, имеем знакочередующийся ряд , который сходится условно в силу теоремы Лейбница. Итак, степенной ряд сходится в промежутке [-1,1).
Слайд 9

Положим . Тогда получим числовой ряд . Этот ряд расходится (сравните его с гармоническим рядом). Полагая x = -1, имеем знакочередующийся ряд , который сходится условно в силу теоремы Лейбница. Итак, степенной ряд сходится в промежутке [-1,1).

Найти интервал сходимости степенного ряда . Здесь , = .Тогда = =. =
Слайд 10

Найти интервал сходимости степенного ряда . Здесь , = .Тогда = =

=

= . Но 0
Слайд 11

= . Но 0

Пример. Найти интервал сходимости ряда . = = = = . Этот предел может быть меньше единицы, если только x=0 (иначе он будет равен бесконечности). Это означает, что степенной ряд сходится лишь в точке x=0.
Слайд 12

Пример

Найти интервал сходимости ряда . = = = = . Этот предел может быть меньше единицы, если только x=0 (иначе он будет равен бесконечности). Это означает, что степенной ряд сходится лишь в точке x=0.

Свойства степенных рядов. Непрерывность суммы ряда. 1. Сумма степенного ряда является непрерывной функцией в каждой точке интервала сходимости этого ряда. Например, непрерывна , если .
Слайд 13

Свойства степенных рядов. Непрерывность суммы ряда

1. Сумма степенного ряда является непрерывной функцией в каждой точке интервала сходимости этого ряда. Например, непрерывна , если .

Почленное дифференцирование. 2. Ряд, полученный почленным дифференцированием степенного ряда, является степенным рядом с тем же интервалом сходимости, что и данный ряд, причем :если , то
Слайд 14

Почленное дифференцирование

2. Ряд, полученный почленным дифференцированием степенного ряда, является степенным рядом с тем же интервалом сходимости, что и данный ряд, причем :если , то

Почленное интегрирование. 3. Степенной ряд можно почленно интегрировать на любом промежутке, целиком входящем в интервал сходимости степенного ряда, при этом где .
Слайд 15

Почленное интегрирование

3. Степенной ряд можно почленно интегрировать на любом промежутке, целиком входящем в интервал сходимости степенного ряда, при этом где .

Разложение функций в степенные ряды
Слайд 16

Разложение функций в степенные ряды

Определения. Определение. Если бесконечно дифференцируемая функция является суммой степенного ряда, то говорят, что она разлагается в степенной ряд . Опр. Рядом Тейлора функции f(x) называется ряд, коэффициенты которого определяются по формулам , т.е. ряд или .
Слайд 17

Определения

Определение. Если бесконечно дифференцируемая функция является суммой степенного ряда, то говорят, что она разлагается в степенной ряд . Опр. Рядом Тейлора функции f(x) называется ряд, коэффициенты которого определяются по формулам , т.е. ряд или .

Степенной ряд как ряд Тейлора. Теорема. Если в некоторой окрестности точки , то ряд справа есть ее ряд Тейлора. Короче: если функция представлена в виде степенного ряда, то этот ряд является ее рядом Тейлора. Представление функции ее рядом Тейлора единственно.
Слайд 18

Степенной ряд как ряд Тейлора

Теорема. Если в некоторой окрестности точки , то ряд справа есть ее ряд Тейлора. Короче: если функция представлена в виде степенного ряда, то этот ряд является ее рядом Тейлора. Представление функции ее рядом Тейлора единственно.

Формула Тейлора. Рассмотрим n-ю частичную сумму ряда Тейлора: Этот многочлен называется многочленом Тейлора функции . Разность называется остаточным членом ряда Тейлора.
Слайд 19

Формула Тейлора

Рассмотрим n-ю частичную сумму ряда Тейлора: Этот многочлен называется многочленом Тейлора функции . Разность называется остаточным членом ряда Тейлора.

Формула Тейлора с остаточным членом в форме Лагранжа. Остаточный член в форме Лагранжа имеет вид: Тогда называется формулой Тейлора с остаточным членом в форме Лагранжа.
Слайд 20

Формула Тейлора с остаточным членом в форме Лагранжа

Остаточный член в форме Лагранжа имеет вид: Тогда называется формулой Тейлора с остаточным членом в форме Лагранжа.

Условия сходимости ряда Тейлора к функции у=f(x). Для того чтобы функцию можно было разложить в ряд Тейлора на интервале(-R,R),необходимо и достаточно, чтобы функция на этом интервале имела производные всех порядков и чтобы остаточный член формулы Тейлора стремился к нулю при всех
Слайд 21

Условия сходимости ряда Тейлора к функции у=f(x)

Для того чтобы функцию можно было разложить в ряд Тейлора на интервале(-R,R),необходимо и достаточно, чтобы функция на этом интервале имела производные всех порядков и чтобы остаточный член формулы Тейлора стремился к нулю при всех

Достаточные условия разложимости функции в ряд Тейлора. Если функция f(x) на интервале (-R,R) бесконечно дифференцируема и ее производные равномерно ограничены в совокупности, т. е. существует такая константа М, что для всех выполняется условие при п=0,1,2,…, то функцию можно разложить в ряд Тейлора
Слайд 22

Достаточные условия разложимости функции в ряд Тейлора

Если функция f(x) на интервале (-R,R) бесконечно дифференцируема и ее производные равномерно ограничены в совокупности, т. е. существует такая константа М, что для всех выполняется условие при п=0,1,2,…, то функцию можно разложить в ряд Тейлора на этом интервале.

Разложение. Все производные этой функции совпадают с самой функцией, а в точке х=0 они равны 1. Составим для функции формально ряд Маклорена: Этот ряд, очевидно, сходится на всей числовой оси. Но все производные функции равномерно ограничены, т. к. , где R-любое число из интервала сходимости. Поэтом
Слайд 23

Разложение

Все производные этой функции совпадают с самой функцией, а в точке х=0 они равны 1. Составим для функции формально ряд Маклорена: Этот ряд, очевидно, сходится на всей числовой оси. Но все производные функции равномерно ограничены, т. к. , где R-любое число из интервала сходимости. Поэтому этот ряд сходится именно к функции

Разложение в ряд синуса. Вычислим производные синуса:
Слайд 24

Разложение в ряд синуса.

Вычислим производные синуса:

Ясно, что все производные синуса не превосходят по модулю единицу. Так что запишем ряд, который будет разложением синуса: при этом видно, что этот ряд сходится на всей числовой оси.
Слайд 25

Ясно, что все производные синуса не превосходят по модулю единицу. Так что запишем ряд, который будет разложением синуса: при этом видно, что этот ряд сходится на всей числовой оси.

Разложения некоторых функций в ряд Тейлора. При решении задач удобно пользоваться разложениями: 1. 2. 3.
Слайд 26

Разложения некоторых функций в ряд Тейлора

При решении задач удобно пользоваться разложениями: 1. 2. 3.

Геометрическую прогрессию мы получили выше: 4. Интегрируя по х обе части равенства, получим логарифмический ряд: 5.
Слайд 27

Геометрическую прогрессию мы получили выше: 4. Интегрируя по х обе части равенства, получим логарифмический ряд: 5.

Биномиальный ряд. 6. 7. Биномиальный, логарифмический ряды и ряд для арктангенса сходятся в интервале (-1,1).
Слайд 28

Биномиальный ряд

6. 7. Биномиальный, логарифмический ряды и ряд для арктангенса сходятся в интервале (-1,1).

Разложить в ряд Тейлора по степеням x функцию Решение. Зная разложение функции в биномиальный ряд, сходящийся на интервале (-1,1), преобразуем данную функцию так, чтобы воспользоваться биномиальным рядом. , где
Слайд 29

Разложить в ряд Тейлора по степеням x функцию Решение. Зная разложение функции в биномиальный ряд, сходящийся на интервале (-1,1), преобразуем данную функцию так, чтобы воспользоваться биномиальным рядом. , где

Применение степенных рядов
Слайд 30

Применение степенных рядов

Приближенное вычисление интегралов. Разложения 1–7 позволяют, используя соответствующее разложение, вычислять приближенно значения функций, интегралы, приближенно интегрировать дифференциальные уравнения. Пример . С помощью степенного ряда вычислить с точностью до 0,0001
Слайд 31

Приближенное вычисление интегралов

Разложения 1–7 позволяют, используя соответствующее разложение, вычислять приближенно значения функций, интегралы, приближенно интегрировать дифференциальные уравнения. Пример . С помощью степенного ряда вычислить с точностью до 0,0001

Решение. Разложим подынтегральную функцию в степенной ряд:
Слайд 32

Решение

Разложим подынтегральную функцию в степенной ряд:

Так как получившийся ряд является знакочередующимся, то сумма знакочередующегося ряда не превосходит первого члена такого ряда. Ясно, что часть ряда, которую в задаче следует отбросить, также является знакочередующимся рядом и его сумма не превзойдет модуля первого отброшенного члена ряда. Таким обр
Слайд 33

Так как получившийся ряд является знакочередующимся, то сумма знакочередующегося ряда не превосходит первого члена такого ряда. Ясно, что часть ряда, которую в задаче следует отбросить, также является знакочередующимся рядом и его сумма не превзойдет модуля первого отброшенного члена ряда. Таким образом, первый отброшенный член ряда должен быть меньше заданной погрешности, т.е. 0,0001.

Вычислив еще несколько членов ряда видим, что Отбросив этот и следующие за ним члены ряда, получим:
Слайд 34

Вычислив еще несколько членов ряда видим, что Отбросив этот и следующие за ним члены ряда, получим:

Приближенное вычисление значений функций. Вычислить с точностью до 0,001.Преобразуем Воспользуемся биномиальным рядом при х=0,25 и
Слайд 35

Приближенное вычисление значений функций

Вычислить с точностью до 0,001.Преобразуем Воспользуемся биномиальным рядом при х=0,25 и

Получим
Слайд 36

Получим

Список похожих презентаций

Степенные ряды. Область сходимости степенного ряда

Степенные ряды. Область сходимости степенного ряда

Содержание:. Определение степенного ряда Примеры степенных рядов Область сходимости степенного ряда. 4. Равномерная сходимость функционального ряда. ...
Степенные функции с отрицательным целым чётным показателем

Степенные функции с отрицательным целым чётным показателем

повторение. График какой функций изображен на рисунке. (данный график построен из графика функции ) Прочитайте данный график. Ни чётная, ни нечётная. ...
Степенные функции

Степенные функции

“СТЕПЕННЫЕ ФУНКЦИИ” Степенная функция с нечетным натуральным показателем. Корень нечетной степени. Степенная функция с четным натуральным показателем. ...
Числовые ряды Миронюк

Числовые ряды Миронюк

- Определение числового ряда - Сумма ряда - Примеры числовых рядов - Определение частичной суммы - Сходящиеся и расходящиеся ряды - Признак Даламбера, ...
Вариационные ряды распределения

Вариационные ряды распределения

Статистические ряды распределения. Определение. Виды. Примеры. Атрибутивный ряд распределения. Вариационный ряд распределения. Графическое изображение ...
Занимательная математика

Занимательная математика

Профессор ложится спать в 8 часов вечера и заводит будильник на 9 часов утра. Сколько часов будет спать профессор? Профессор. Рядом с берегом со спущенной ...
Занимательная математика в младших классах

Занимательная математика в младших классах

Круглый, румяный. В печке печён, На окошке стужён. Кто я? Колобок. Проверка 5, 8, 4, 6, 7, 0, 1, 2 Молодцы! Задача. Семь снегирей на ветке сидели. ...
Занимательная математика

Занимательная математика

РАЗМИНКА Миша тратит на дорогу в школу 5 минут. Сколько минут он потратит на эту дорогу вдвоём с мамой? Какие сто букв могут остановить движение транспорта? ...
Занимательная математика

Занимательная математика

Подводная арифметика. Детёныш голубого кита выпивает за день 600 л молока. Сколько молока выпьет такой малыш за месяц (30 дней)? Ответ: 18 000 л. ...
математика прекрасная наука

математика прекрасная наука

let's see what they say about mathematics its great fans and creators. Again and again repeat the saying of Pythagoras: There is no doubt that the ...
«Координатная плоскость» математика

«Координатная плоскость» математика

Цели и задачи урока:. 1. Ввести понятие координатной плоскости, уметь определять координаты точек, строить точки по их координатам. 2. Развивать мышление, ...
береза глазами математика

береза глазами математика

Цель. Целью данного исследования является выявление в повседневной жизни различных законов, которым нас обучают еще в школе. И как же все можно связать ...
Конкурс "Ох, уж эта математика"

Конкурс "Ох, уж эта математика"

Зал красочно оформлен: на стенах математические газеты. Рисунки, кроссворды, высказывания ученых. Их портреты. В жюри трое родителей. Ведущая Счетный ...
«Устный счёт» математика

«Устный счёт» математика

1- 0,4 3 +2,4 3,2 – 2 3,2- 0,2 12,3 + 3,4 2,04 + 3,6 12 – 1,5 6,2- 2,6 ( 12,4 + 3,67)- 2,67 ( 45,06 + 23,5) – 40 ,06. 0,6 5,4 1,2 3 15,7 5,64 10,5 ...
Арифметические действия над числами или зачем туристу математика?

Арифметические действия над числами или зачем туристу математика?

27 сентября – день туриста. 34 х 2 = 90 : 30 = 9 + 45 = 11 х 3 = 80 – 19 = 55 : 5 = И У Р Т С 68 3 54 33 61 11. Что лежит в рюкзаке туриста? спички ...
«Углы» математика

«Углы» математика

Цель урока:. познакомить учащихся с геометрической фигурой углом, с видами углов (прямой, тупой, острый), сформировать представления о существенных ...
«Своя игра» математика

«Своя игра» математика

Математическая игра-викторина «Своя игра». Конец игры Литература. Задачи – шутки 50. Вопрос: Один господин написал о себе: «Пальцев у меня двадцать ...
«Своя игра» математика

«Своя игра» математика

Условия игры:. Участники сами выбирают темы и вопросы. Вопрос выбирает правильно ответившая команда. 210 – 250 баллов – отметка «5». 110 -200 баллов ...
Занимательная математика для детей (устный счёт + учимся писать цифры)

Занимательная математика для детей (устный счёт + учимся писать цифры)

По дороге мальчик и девочка шли, Оба по два рубля нашли. За ними ещё трое идут. Сколько они денег найдут? Повезло опять Егорке, У реки сидит не зря. ...
Задания по впр математика

Задания по впр математика

№1. Найди значение примера: 43 − 27 Найди значение выражения: 7 + 3⋅(8 +12) ОТВЕТЫ 16 67. № 2. Рассмотри рисунок и ответь на вопрос: сколько рублей ...

Конспекты

Степенные функции, их свойства и графики

Степенные функции, их свойства и графики

Тема урока:. . «Степенные функции, их свойства и графики». . Цели урока:. . Образовательная:. Создать условия для закрепления знаний о свойствах ...
Степенные функции, их свойства и графики

Степенные функции, их свойства и графики

Конспект урока на тему. «Степенные функции, их свойства и графики». Учитель. : Чижова Светлана Анатольевна г. Иваново. Тип урока:. урок формирования ...
Степени и корни. Степенные функции

Степени и корни. Степенные функции

Поурочные разработки. по. . алгебре и началам анализа к УМК А.Г. Мордковича 11 класс. Глава 6. . Степени и корни. Степенные функции. . Урок ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 февраля 2019
Категория:Математика
Содержит:36 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации