Презентация "Что такое процент?" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34

Презентацию на тему "Что такое процент?" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 34 слайд(ов).

Слайды презентации

Проценты вокруг нас. Что такое процент? Одиноков Алексей Евгеньевич 222-244-952
Слайд 1

Проценты вокруг нас.

Что такое процент?

Одиноков Алексей Евгеньевич 222-244-952

Знакомство с процентом. На примерах из жизни познать значимость и необходимость процента. Цель презентации.
Слайд 2

Знакомство с процентом. На примерах из жизни познать значимость и необходимость процента.

Цель презентации.

Для чего и когда появился процент? Знакомство с процентом. Происхождение обозначения. Правила набора. Знакомьтесь родственник процента – промилле. Виды задач на проценты с примерами. Немного житейских задач. Расчет процентов на банковский депозит. Формула расчета простых процентов. Расчет процентов
Слайд 3

Для чего и когда появился процент? Знакомство с процентом. Происхождение обозначения. Правила набора. Знакомьтесь родственник процента – промилле. Виды задач на проценты с примерами. Немного житейских задач. Расчет процентов на банковский депозит. Формула расчета простых процентов. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов. Заключение

Содержание.

Слово «процент» произошло от латинских слов pro centum, что буквально означает «за сотню» или «со ста». Проценты дают возможность легко сравнивать между собой части целого, упрощая расчёты. Пример: Что больше ½ или ¾? Для чего и когда появился процент? ½ = 50 % < ¾ = 75 %
Слайд 4

Слово «процент» произошло от латинских слов pro centum, что буквально означает «за сотню» или «со ста». Проценты дают возможность легко сравнивать между собой части целого, упрощая расчёты. Пример: Что больше ½ или ¾?

Для чего и когда появился процент?

½ = 50 % < ¾ = 75 %

Идея выражения частей целого постоянно в одних и тех же долях, вызванная практическими соображениями, родилась еще в древности у вавилонян. Ряд задач клинописных табличек посвящен исчислению процентов, однако вавилонские ростовщики считали не «со ста», а «с шестидесяти», так как в Вавилоне пользовал
Слайд 5

Идея выражения частей целого постоянно в одних и тех же долях, вызванная практическими соображениями, родилась еще в древности у вавилонян. Ряд задач клинописных табличек посвящен исчислению процентов, однако вавилонские ростовщики считали не «со ста», а «с шестидесяти», так как в Вавилоне пользовались шестидесятеричными дробями. Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. От римлян проценты перешли к другим народам Европы.

Долгое время под процентами понимались исключительно прибыль или убыток на каждые сто рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, в экономических расчетах, в страховании, статистике
Слайд 6

Долгое время под процентами понимались исключительно прибыль или убыток на каждые сто рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, в экономических расчетах, в страховании, статистике, науке и технике.

В процентах выражаются ставки налогов, доходность капиталовложений, плата за заемные денежные средства (например, кредиты банка), темпы роста экономики и многое другое.

Римляне брали с должника лихву (т. е. деньги сверх того, что дали в долг). При этом говорили: «На каждые 100 сестерциев долга заплатить 16 сестерциев лихвы».

Процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу) или сотая часть единицы. Обозначается знаком «%». Используется для обозначения доли чего-либо по отношению к целому. Запись 1% означает 0,01 или 1/100. Так как 1 % равен сотой части величины, то вся величина рав
Слайд 7

Процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу) или сотая часть единицы. Обозначается знаком «%». Используется для обозначения доли чего-либо по отношению к целому. Запись 1% означает 0,01 или 1/100. Так как 1 % равен сотой части величины, то вся величина равна 100%

Знакомство с процентом.

Если часть величины, заданную десятичной дробью, надо выразить в процентах, то можно в этой дроби перенести запятую на два знака вправо и к полученному числу приписать знак %. Справедливо и обратное правило. 0,07 % = 0,0007; 0,451 = 45,1 %; 100 % = 1;	2 = 200 %.
Слайд 8

Если часть величины, заданную десятичной дробью, надо выразить в процентах, то можно в этой дроби перенести запятую на два знака вправо и к полученному числу приписать знак %. Справедливо и обратное правило. 0,07 % = 0,0007; 0,451 = 45,1 %; 100 % = 1; 2 = 200 %.

Чтобы выразить в процентах часть величины, заданную обыкновенной дробью, нужно сначала эту дробь обратить в десятичную. 3/8 = 0,375, т. е. 3/8 – это 37,5 %
Слайд 9

Чтобы выразить в процентах часть величины, заданную обыкновенной дробью, нужно сначала эту дробь обратить в десятичную. 3/8 = 0,375, т. е. 3/8 – это 37,5 %

Запомни! Например, 17 % от 500 кг означает 17 частей по 5 кг каждая, то есть 85 кг. Справедливо также утверждение, что 200 % от 500 кг является 1000 кг. Поскольку по отношению к половине тонны, тонна соответствует 2×100 %.
Слайд 10

Запомни!

Например, 17 % от 500 кг означает 17 частей по 5 кг каждая, то есть 85 кг. Справедливо также утверждение, что 200 % от 500 кг является 1000 кг. Поскольку по отношению к половине тонны, тонна соответствует 2×100 %.

В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход. Pro cen
Слайд 11

В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход. Pro cento – cento – cto - c/o - % Как возник знак процента Изобретение математических знаков и символов значительно облегчило изучение математики и способствовало дальнейшему ее развитию.

Происхождение обозначения.

В тексте знак процента используется только при числах в цифровой форме, от которых при наборе отделяется неразрывным пробелом (доход 67 %), кроме случаев, когда знак процента используется для сокращённой записи сложных слов, образованных при помощи числительного и прилагательного процентный. Наприме
Слайд 12

В тексте знак процента используется только при числах в цифровой форме, от которых при наборе отделяется неразрывным пробелом (доход 67 %), кроме случаев, когда знак процента используется для сокращённой записи сложных слов, образованных при помощи числительного и прилагательного процентный. Например: 20%-я сметана (означает двадцатипроцентная сметана), 10%-й раствор, 20%-му раствору, но жирность сметаны составляет 20 %, раствор концентрацией 10 % и т. п.Это правило набора введено в действие в 1982 году нормативным документом ГОСТ 8.417—81 (впоследствии заменённым на ГОСТ 8.417—2002); ранее нормой было не отделять знак процента пробелом от предшествующей цифры. В настоящее время правило отбивки знака процента не является общепризнанным. До сих пор многие российские издательства не следуют рекомендациям ГОСТ 8.417—2002 и по-прежнему придерживаются традиционных правил набора, то есть при наборе знак процента от предшествующего числа не отделяется, что было мною замечено в школьных учебниках при подготовке данной презентации.

Правила набора.

Ударение в слове процент в единственном и множественном числе во всех падежах сохраняется на втором слоге. Например: сто один процент; не более восемнадцати процентов. а) Сочетание «несколько процентов (от чего?) …» используется, если зависимое слово – числительное. Например, «десять процентов от ше
Слайд 13

Ударение в слове процент в единственном и множественном числе во всех падежах сохраняется на втором слоге. Например: сто один процент; не более восемнадцати процентов. а) Сочетание «несколько процентов (от чего?) …» используется, если зависимое слово – числительное. Например, «десять процентов от шестидесяти». б) Сочетание «несколько процентов (чего?) …» используется, если зависимое слово – существительное, не имеющее количественного значения. Например, «тридцать процентов населения».

в) Если зависимое слово по смыслу связано с количеством, допустимы обе конструкции. Например, «шесть процентов зарплаты» и «шесть процентов от зарплаты». Слова «процент», «проценты» читаются в большинстве случаев в том же падеже, что и числительное. Например: 1/5 = 20 % - одна пятая равна двадцати (
Слайд 14

в) Если зависимое слово по смыслу связано с количеством, допустимы обе конструкции. Например, «шесть процентов зарплаты» и «шесть процентов от зарплаты». Слова «процент», «проценты» читаются в большинстве случаев в том же падеже, что и числительное. Например: 1/5 = 20 % - одна пятая равна двадцати (д. п.) процентам (д. п.) 0,6 > 50 % - ноль целых шесть десятых больше пятидесяти (р. п.) процентов (р. п.). После любого падежа числительных, оканчивающихся словом «тысяча» или «миллион», слово «проценты» ставится в родительном падеже. Например, «прирост производительности труда равен тысяче (д. п.) процентов (д. п.)».

Иногда применяют и более мелкие доли целого – тысячные, то есть десятые части процента. Их называют «промилле» происходит от лат. «pro mille», что означает в переводе «с тысячи» или «тысячная доля» — 1/10 процента. Обозначается дробью «0 делить на 00» (‰). Как и «процент», тоже используется для обоз
Слайд 15

Иногда применяют и более мелкие доли целого – тысячные, то есть десятые части процента. Их называют «промилле» происходит от лат. «pro mille», что означает в переводе «с тысячи» или «тысячная доля» — 1/10 процента. Обозначается дробью «0 делить на 00» (‰). Как и «процент», тоже используется для обозначения доли чего-либо по отношению к целому. Соотношение к процентам и десятичным дробям

Знакомьтесь родственник процента – промилле.

Величина в промилле от массы, выраженной в килограммах, эквивалентна массе в граммах. От массы в тоннах — килограммам. Например, фраза «солёность воды составляет 11 ‰ (одиннадцать промилле)», это то- же самое, что и 1,1 % и означает, что из общей массы воды 0,011 (11 тысячных) занимают соли; так, ес
Слайд 16

Величина в промилле от массы, выраженной в килограммах, эквивалентна массе в граммах. От массы в тоннах — килограммам. Например, фраза «солёность воды составляет 11 ‰ (одиннадцать промилле)», это то- же самое, что и 1,1 % и означает, что из общей массы воды 0,011 (11 тысячных) занимают соли; так, если взять 1 кг воды, то в ней будет 0,011×1000 = 11 г солей.

Поскольку проценты выражаются дробями, то задачи на проценты, по существу, являются теми же задачами на дроби. Какое количество В составляет Р % от А? Нахождение указанного процента от заданного числа. Формула: А∙(Р/100) Чтобы найти данное число процентов от числа, нужно проценты записать десятичной
Слайд 17

Поскольку проценты выражаются дробями, то задачи на проценты, по существу, являются теми же задачами на дроби. Какое количество В составляет Р % от А? Нахождение указанного процента от заданного числа. Формула: А∙(Р/100) Чтобы найти данное число процентов от числа, нужно проценты записать десятичной дробью, а затем число умножить на эту десятичную дробь. Пример. Швейная фабрика выпустила 1200 костюмов. Из них 30% - костюмы нового фасона. Сколько костюмов нового фасона выпустила фабрика? В = 1200∙30/100 = 1200∙0,3 = 360

Виды задач на проценты с примерами.

Какого количество В, Р % от которого есть А? Нахождение числа по заданному другому числу и его величине в процентах от искомого числа. Формула: А∙(100/Р) Пример. За тест по математике отметку «5» получили 12 учеников, что составляет 30% всех учеников. Сколько учеников выполняло тест? В = 100∙12/30 =
Слайд 18

Какого количество В, Р % от которого есть А? Нахождение числа по заданному другому числу и его величине в процентах от искомого числа. Формула: А∙(100/Р) Пример. За тест по математике отметку «5» получили 12 учеников, что составляет 30% всех учеников. Сколько учеников выполняло тест? В = 100∙12/30 = 40

Какого количество В, большее (меньшее) чем А, на Р%? Увеличение (уменьшение) числа на заданный процент. Формула: A+A∙P/100 = А∙(1+Р/100),	A-A∙P/100 = А∙(1-Р/100) Пример. Рабочий изготовил 720 деталей за смену, перевыполнив план на 20 %. Сколько деталей составляет плановое задание рабочего? А∙(1+20/1
Слайд 19

Какого количество В, большее (меньшее) чем А, на Р%? Увеличение (уменьшение) числа на заданный процент. Формула: A+A∙P/100 = А∙(1+Р/100), A-A∙P/100 = А∙(1-Р/100) Пример. Рабочий изготовил 720 деталей за смену, перевыполнив план на 20 %. Сколько деталей составляет плановое задание рабочего? А∙(1+20/100) =720 В = 720/(1+20/100) = 720/(1+1/5) = 720/1,2 = 600 Пример. Денежная сумма к выдаче за минусом подоходного налога (13 процентов). Пусть оклад составляет 10 000 рублей. Тогда сумма к выдаче составляет: В= 10000 * (1 - 13 / 100) = 10000 * 0.87 = 8700.

Сколько % составляет А от В? Нахождение процентного выражения одного числа от другого. Формула: (А/В)∙100% Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов. Пример. Завод произвёл за год 40000 автомоб
Слайд 20

Сколько % составляет А от В? Нахождение процентного выражения одного числа от другого. Формула: (А/В)∙100% Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов. Пример. Завод произвёл за год 40000 автомобилей, а в следующем году – только 36000 автомобилей. Сколько процентов это составило по отношению к выпуску предыдущего года? P = 36000 : 40000 · 100 = 90% .

На сколько % А больше (меньше), чем В? Формула: (А-В)/В∙100%, (В-А)/В∙100% Пример. Число учащихся, записавшихся в данную школу, выросло с 351 до 396 человек. На сколько процентов возросло это число? Прирост составил 396 – 351 = 45 человек. Записывая дробь 45/351 в процентах, получаем: 45/351 = 0,128
Слайд 21

На сколько % А больше (меньше), чем В? Формула: (А-В)/В∙100%, (В-А)/В∙100% Пример. Число учащихся, записавшихся в данную школу, выросло с 351 до 396 человек. На сколько процентов возросло это число? Прирост составил 396 – 351 = 45 человек. Записывая дробь 45/351 в процентах, получаем: 45/351 = 0,128 = 12,8%.

Задача 1. В январе стоимость билета в цирк была 200 рублей. В феврале его стоимость подорожала на 15%, а в марте – ещё на 20%. Какая стала стоимость билета в цирк в марте. Немного житейских задач.
Слайд 22

Задача 1. В январе стоимость билета в цирк была 200 рублей. В феврале его стоимость подорожала на 15%, а в марте – ещё на 20%. Какая стала стоимость билета в цирк в марте.

Немного житейских задач.

Cначала узнаём, на сколько рублей подорожал билет в феврале, т.е. найдём 15% от 200 р. 15% от стоимости билета – это 0,15 рублей: 200*0,15=30 (р.). Теперь можно определить стоимость билета в феврале: 200+30=230 (р.). Чтобы узнать мартовскую стоимость билета, нужно найти 20% от февральской стоимость
Слайд 23

Cначала узнаём, на сколько рублей подорожал билет в феврале, т.е. найдём 15% от 200 р. 15% от стоимости билета – это 0,15 рублей: 200*0,15=30 (р.). Теперь можно определить стоимость билета в феврале: 200+30=230 (р.). Чтобы узнать мартовскую стоимость билета, нужно найти 20% от февральской стоимость билета и прибавить полученное число к 230: 20% от стоимости билета – это 0,2 рублей: 230*0,2=46 (р.). 230+46=276 (р.).

Решение задачи 1

Задача 2. За хорошую учебу своего сына мама с папой решили купить ему новый компьютер. Первоначальная стоимость компьютера составляла 20 000 руб. Семье повезло дважды: воскресная скидка 5 % и новогоднее предложение – скидка 10 %. Определите цену товара после двух понижений: сначала на 5 %, а потом н
Слайд 24

Задача 2. За хорошую учебу своего сына мама с папой решили купить ему новый компьютер. Первоначальная стоимость компьютера составляла 20 000 руб. Семье повезло дважды: воскресная скидка 5 % и новогоднее предложение – скидка 10 %. Определите цену товара после двух понижений: сначала на 5 %, а потом на 10 %.

20 000•5/100 = 1000 руб. – составляют 5 %; 20 000 – 1000 = 19 000 руб. – цена после первой скидки; 19 000/10 = 1900 руб. – составляют 10 % 19 000 – 1900 = 17 100 руб. – цена товара после двух понижений. Решение задачи 2
Слайд 25

20 000•5/100 = 1000 руб. – составляют 5 %; 20 000 – 1000 = 19 000 руб. – цена после первой скидки; 19 000/10 = 1900 руб. – составляют 10 % 19 000 – 1900 = 17 100 руб. – цена товара после двух понижений.

Решение задачи 2

Задача 3. Собрали 100 кг грибов. Оказалось, что их влажность 99%. Когда грибы подсушили, влажность снизилась до 98%. Какой стала масса грибов после подсушивания?
Слайд 26

Задача 3. Собрали 100 кг грибов. Оказалось, что их влажность 99%. Когда грибы подсушили, влажность снизилась до 98%. Какой стала масса грибов после подсушивания?

По условию в 100 кг грибов содержится 1 кг сухого вещества (100 - 0,99 100 = 1). Так как масса сухого вещества в общей массе грибов постоянна (1 кг) и стала после подсушивания составлять 2% (100 - 98 = 2), то масса грибов после подсушивания стала равной 50 кг (если 2% - 1 кг, то 100% - 50 кг). Масса
Слайд 27

По условию в 100 кг грибов содержится 1 кг сухого вещества (100 - 0,99 100 = 1). Так как масса сухого вещества в общей массе грибов постоянна (1 кг) и стала после подсушивания составлять 2% (100 - 98 = 2), то масса грибов после подсушивания стала равной 50 кг (если 2% - 1 кг, то 100% - 50 кг). Масса грибов после подсушивания стала 50 кг.

Решение задачи 3

Напоследок мне хочется рассмотреть заинтересовавшие меня проценты, применяемые в экономике о которых настойчиво сообщают нам все средства массовой информации. Для этого они были придуманы много лет тому назад – это проценты в сфере бизнеса.
Слайд 28

Напоследок мне хочется рассмотреть заинтересовавшие меня проценты, применяемые в экономике о которых настойчиво сообщают нам все средства массовой информации. Для этого они были придуманы много лет тому назад – это проценты в сфере бизнеса.

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов. S = K + (K*P*d/D)/100 Sp = (K*P*d/D)/100 Где: S — сумма банковского депозита с процентами, Sp — сумма процентов (доход), K — первоначальная сумма (капитал), P — годовая
Слайд 29

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов. S = K + (K*P*d/D)/100 Sp = (K*P*d/D)/100 Где: S — сумма банковского депозита с процентами, Sp — сумма процентов (доход), K — первоначальная сумма (капитал), P — годовая процентная ставка, d — количество дней начисления процентов по привлеченному вкладу, D — количество дней в календарном году (365 или 366).

Расчет процентов на банковский депозит. Формула расчета простых процентов.

Пример 1. Банком принят депозит в сумме 100 тыс. рублей сроком на 1 год по ставке 20 процентов. S = 100000 + 100000*20*365/365/100 = 120000 Sp = 100000 * 20*365/365/100 = 20000 Пример 2. Банком принят депозит в сумме 100 тыс. рублей сроком на 30 дней по ставке 20 процентов. S = 100000 + 100000*20*30
Слайд 30

Пример 1. Банком принят депозит в сумме 100 тыс. рублей сроком на 1 год по ставке 20 процентов. S = 100000 + 100000*20*365/365/100 = 120000 Sp = 100000 * 20*365/365/100 = 20000 Пример 2. Банком принят депозит в сумме 100 тыс. рублей сроком на 30 дней по ставке 20 процентов. S = 100000 + 100000*20*30/365/100 = 101643.84 Sp = 100000 * 20*30/365/100 = 1643.84

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов. S = K * (1 + P*d/D/100)N Где: S — сумма депозита с процентами, К — сумма депозита (капитал), P — годовая процентная ставка
Слайд 31

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов. S = K * (1 + P*d/D/100)N Где: S — сумма депозита с процентами, К — сумма депозита (капитал), P — годовая процентная ставка, N — число периодов начисления процентов. При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход): Sp = S - K = K * ( 1 + P*d/D/100 )N - K или Sp = K * ((1 + P*d/D/100)N - 1)

Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.

Пример 1. Принят депозит в сумме 100 тыс. рублей сроком на 90 дней по ставке 20 процентов годовых с начислением процентов каждые 30 дней. S = 100000 * (1 + 20*30/365/100)3 = 105 013.02 Sp = 100000 * ((1 + 20*30/365/100)N - 1) = 5 013.02 Пример 2. Проверим формулу начисления сложных процентов для слу
Слайд 32

Пример 1. Принят депозит в сумме 100 тыс. рублей сроком на 90 дней по ставке 20 процентов годовых с начислением процентов каждые 30 дней. S = 100000 * (1 + 20*30/365/100)3 = 105 013.02 Sp = 100000 * ((1 + 20*30/365/100)N - 1) = 5 013.02 Пример 2. Проверим формулу начисления сложных процентов для случая из предыдущего примера. Разобьем срок депозита на 3 периода и рассчитаем начисление процентов для каждого периода, использую формулу простых процентов. S1 = 100000 + 100000*20*30/365/100 = 101643.84 Sp1 = 100000 * 20*30/365/100 = 1643.84 S2 = 101643.84 + 101643.84*20*30/365/100 = 103314.70 Sp2 = 101643.84 * 20*30/365/100 = 1670.86 S3 = 103314.70 + 103314.70*20*30/365/100 = 105013.02 Sp3 = 103314.70 * 20*30/365/100 = 1698.32 Общая сумма процентов с учетом начисления процентов на проценты (сложные проценты) Sp = Sp1 + Sp2 + Sp3 = 5013.02 Таким образом, формула вычисления сложных процентов верна.

Примеры к Расчету процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.

Я повторил пройдённый материал по процентам. Познакомился с заинтересовавшими меня процентами в банковской сфере. Узнал, что сейчас область применения процентов очень велика по сравнению со временем их рождения, когда их применяли только ростовщики. Я понял, что проценты можно применять везде. И поэ
Слайд 33

Я повторил пройдённый материал по процентам. Познакомился с заинтересовавшими меня процентами в банковской сфере. Узнал, что сейчас область применения процентов очень велика по сравнению со временем их рождения, когда их применяли только ростовщики. Я понял, что проценты можно применять везде. И поэтому «Проценты вокруг нас» существуют и уже никуда не денутся. Знание и понимание процентов необходимо в современной жизни.

Заключение.

Математика нужна! Математика важна! В гастрономе как-то дед Закупался на обед. Взял он фруктов, колбасы, Положил всё на весы. Продавец всё подсчитала, Старика и обсчитала. В школе дед учился плохо, Не заметил он подвоха. Математику бы знал, Сохранил бы капитал! К. Ларин
Слайд 34

Математика нужна! Математика важна!

В гастрономе как-то дед Закупался на обед. Взял он фруктов, колбасы, Положил всё на весы. Продавец всё подсчитала, Старика и обсчитала. В школе дед учился плохо, Не заметил он подвоха. Математику бы знал, Сохранил бы капитал! К. Ларин

Список похожих презентаций

Что такое гипербола?

Что такое гипербола?

История происхождения гиперболы. Одним из первых, кто начал изучать конические сечения — эллипс, парабола, гипербола, был ученик знаменитого Платона, ...
"Что такое подобные слагаемые?"

"Что такое подобные слагаемые?"

Что вы хотите получить сегодня на уроке? Повысить уровень знаний; Пообщаться с учителем; Пообщаться с товарищами; Посидеть и помолчать лишь бы не ...
Что такое функция?

Что такое функция?

ЦЕЛЬ УРОКА дать представление о функции с помощью понятия «множество», показать связь между математикой и окружающим миром. Функцией в общем понимании ...
Что такое дроби?

Что такое дроби?

Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Делимое называется числителем дроби, а делитель — знаменателем. ...
Что такое числа?

Что такое числа?

КАКИМИ БЫЛИ ПЕРВЫЕ ЦИФРЫ? Первые написанные цифры, о которых мы имеем достоверные свидетельства, появились в Египте и Месопотамии около 5000 лет назад. ...
Что такое функция

Что такое функция

Устный счет. При каких значениях переменной х имеет смысл выражение: 3х;    3-х;    3/х;    x/3;    3/(x-3);    (x+3)/3 Как расположена точка А на координатной плоскости ...
Что такое понятие?

Что такое понятие?

Как можно определить понятие? по признакам. С помощью чего строится видовое понятие? Классификация Тема. живая природа Животные Человек Растения. ...
Что такое треугольник?

Что такое треугольник?

Что такое треугольник? В А С. Посмотрите на рисунок и ответьте на несколько вопросов: 1) Что изучает планиметрия? 2) Какая фигура изображена? 3) Из ...
Что такое параллелограмм

Что такое параллелограмм

Цели:. Ввести понятие параллелограмма. Рассмотреть свойства параллелограмма. Рассмотреть признаки параллелограмма. Решение базовых задач. ABCD – параллелограмм. ...
Что такое пирамида ?

Что такое пирамида ?

Термин “пирамида” заимствован из греческого “пирамис” или “пирамидос”. Греки в свою очередь позаимствовали это слово, как полагают, из египетского ...
Что такое задача

Что такое задача

Я, Корпатыч, Крош, Лосяш. Догоняем дружно мяч. Нюша с Ёжиком пока - Запасных два игрока. А когда подучатся, Сколько нас получится? 7 ромашек наша ...
Что такое математика?

Что такое математика?

Слово «математика» произошло от др.-греч. máthēma, что означает изучение, знание, наука, и др.-греч. mathēmatikós, первоначально означающего восприимчивый, ...
Что такое функция?

Что такое функция?

Цели урока:. Ознакомиться с понятием «функция», закрепить его на примерах Усвоить новые термины: зависимая переменная и независимая переменная (аргумент ...
Что такое геометрия

Что такое геометрия

Геометрия- одна из наиболее древних наук. Первые геометрические факты были найдены…. В Вавилонских клинописных таблицах и египетских папируса (III ...
Что такое геометрия?

Что такое геометрия?

Подразделы геометрии:. Классическая геометрия. Классическая геометрия – геометрия точек, прямых и плоскостей, а также фигур на плоскости и тел в пространстве. ...
Что такое геометрия

Что такое геометрия

ПЛАН. Происхождение слова геометрия. 1. Что изучает геометрия. Причины возникновения геометрии. 3. Основоположники геометрии. 4. Слово геометрия древнегреческого ...
что такое вероятность?

что такое вероятность?

Цели и задачи урока. Цель: познакомить с понятием «вероятность». Задачи урока. Образовательная: научить решать задачи, совершенствовать умения и навыки ...
Что такое функция

Что такое функция

Цели урока:. Ознакомиться с понятием «функция», закрепить его на примерах Усвоить новые термины: зависимая переменная и независимая переменная (аргумент ...
Что означают слова «с точностью до …»

Что означают слова «с точностью до …»

Что означают слова «с точностью до …. Цель : ввести запись a ± h; способствовать усвоению терминологии; развивать навыки определения по записи промежутка, ...
Что сначала? Что потом?

Что сначала? Что потом?

Что сначала? Что потом? Урок по математике в 1 классе УМК « Перспектива» авторы учебника Г.В. Дорофеев, Т.Н. Миракова. . Бабушка объяснила внуку, ...

Конспекты

Что такое логика

Что такое логика

Республика Коми. МОУ «Чимская основная общеобразовательная школа». Методическая разработка. внеклассного мероприятия. . по математике. ...
Что такое математический язык

Что такое математический язык

Математика 7 класс. Тема урока:"Что такое математический язык". Автор: учитель математике МАОУ "СОШ №108". Федоровцева Наталья Леонидовна. Познавательные ...
Что такое функция?

Что такое функция?

Алгебра. . 7 класс. . «Что такое функция?». Цели:. Воспитать интерес к математике через использование нестандартных форм обучения;. . Ввести ...
Что такое функция

Что такое функция

МАРШРУТНЫЙ ЛИСТ обучения, взаимоконтроля и самоконтроля по теме:. Урок 1. . Тема. :. Что такое функция. . . ( учебник стр. 51-53). Класс 7 А. Фамилия, ...
Что такое функция

Что такое функция

Фрагмент урока с применением ИКТ по теме «Что такое функция», алгебра, 7 класс. Тип урока:. . Изучение нового материала. . Вид урока:. комбинированный ...
Что такое модуль?

Что такое модуль?

. Методический паспорт учебного проекта. . Название проекта. . Что такое модуль? . ФИО разработчика проекта. . . Веремеенко Светлана ...
Что такое уравнение?

Что такое уравнение?

Тема:. Что такое уравнение? Цель: формирование понятия «уравнение», «корень уравнения», умения решать уравнения. Ход урока. 1.Мотивация. Прозвенел ...
Что такое задача

Что такое задача

Автор учебника:. И.И.Аргинская, Е.П.Бененсон, Л.С.Итина, С.Н.Кормишина. Тип урока:. . Урок «открытия» новых знаний. . Тема урока:. «Что такое ...
Что такое линейка и что она умеет?

Что такое линейка и что она умеет?

Тема: Что такое линейка и что она умеет? Цели:. Предметные. Познакомить учащихся с линейкой как чертёжным инструментом;. . Учить пользоваться ...
Что такое дробь?

Что такое дробь?

Урок математики 5 класс (программа и учебник Г.В. Дорофеева). Тема урока:. Что такое дробь? Первый урок по теме «Дроби» - 20 часов. Содержание ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:8 января 2019
Категория:Математика
Содержит:34 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации