- 5.Уравнение в полных дифференциалах. Интегрирующий множитель

Презентация "5.Уравнение в полных дифференциалах. Интегрирующий множитель" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "5.Уравнение в полных дифференциалах. Интегрирующий множитель" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

5.Уравнение в полных дифференциалах. Интегрирующий множитель.
Слайд 1

5.Уравнение в полных дифференциалах. Интегрирующий множитель.

Теорема: Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные и ,представляла собой полный дифференциал некоторой функции , необходимо и достаточно, чтобы во всех точках области было выполнено условие .
Слайд 2

Теорема:

Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные и ,представляла собой полный дифференциал некоторой функции , необходимо и достаточно, чтобы во всех точках области было выполнено условие .

Интегрирующий множитель.
Слайд 3

Интегрирующий множитель.

Если , то уравнение не является уравнением в полных дифференциалах. Однако это уравнение можно превратить в уравнения в полных дифференциалах умножением на подходящую функцию . Такая функция называется интегрирующим множителем для данного дифференциального уравнения.
Слайд 4

Если , то уравнение не является уравнением в полных дифференциалах. Однако это уравнение можно превратить в уравнения в полных дифференциалах умножением на подходящую функцию . Такая функция называется интегрирующим множителем для данного дифференциального уравнения.

Практически поступают так: берут выражение , делят на , если не зависит частное от , то находят по формуле , если в противном случае делят на и если частное не зависит от x , то существует и его находят по формуле
Слайд 5

Практически поступают так: берут выражение , делят на , если не зависит частное от , то находят по формуле , если в противном случае делят на и если частное не зависит от x , то существует и его находят по формуле

6.Дополнительные сведения.
Слайд 6

6.Дополнительные сведения.

Дифференциальное уравнение может быть также истолковано следующим образом. Пусть - общее решение дифференциального уравнения, т.е. семейство интегрирующих кривых в некоторой области , плоскости , в которой определена функция . Дифференциальное уравнение устанавливает связь между координатами любой т
Слайд 7

Дифференциальное уравнение может быть также истолковано следующим образом.

Пусть - общее решение дифференциального уравнения, т.е. семейство интегрирующих кривых в некоторой области , плоскости , в которой определена функция . Дифференциальное уравнение устанавливает связь между координатами любой точки области и значением производной в этой точке. Зная и точки , можно найти значение производной, т.е. угловой коэффициент касательной к интегрирующей кривой, проходящую через точку .

Рисунок 5. . Т.е. дифференциальное уравнение определяет совокупность направлений, или поле направлений в области .Изображая стрелкой направление, можно построить поле направлений дифференциального уравнения . М у х
Слайд 8

Рисунок 5

. Т.е. дифференциальное уравнение определяет совокупность направлений, или поле направлений в области .Изображая стрелкой направление, можно построить поле направлений дифференциального уравнения .

М у х

Геометрически задача интегрирования дифференциального уравнения заключается в нахождении кривых, которые в каждой своей точке касаются направления, задаваемым полем .
Слайд 9

Геометрически задача интегрирования дифференциального уравнения заключается в нахождении кривых, которые в каждой своей точке касаются направления, задаваемым полем .

Теорема (Коши). Если функция определена и непрерывна в области плоскости и имеет непрерывную частную производную во всех точках этой области, то, какова бы ни была точка области , всегда существует и притом единственная, функция , которая определена и непрерывна в некотором интервале, содержащим точ
Слайд 10

Теорема (Коши).

Если функция определена и непрерывна в области плоскости и имеет непрерывную частную производную во всех точках этой области, то, какова бы ни была точка области , всегда существует и притом единственная, функция , которая определена и непрерывна в некотором интервале, содержащим точку , является решением уравнения и принимает при значение .

7. Уравнение первого порядка, не разрешенные относительно производной.
Слайд 11

7. Уравнение первого порядка, не разрешенные относительно производной.

Рассмотрим дифференциальное уравнение , не разрешенное относительно .
Слайд 12

Рассмотрим дифференциальное уравнение , не разрешенное относительно .

Случай 1. Уравнение первого порядка n-й степени , где n-целое положительное число, , - функции от х и у.
Слайд 13

Случай 1.

Уравнение первого порядка n-й степени , где n-целое положительное число, , - функции от х и у.

Получили :
Слайд 14

Получили :

Общие интегралы имеют вид:
Слайд 15

Общие интегралы имеют вид:

Случай 2. Уравнение разрешенное относительно у и не содержащее х . Это уравнение решается методом введения параметра р. Пусть , тогда .
Слайд 16

Случай 2.

Уравнение разрешенное относительно у и не содержащее х . Это уравнение решается методом введения параметра р. Пусть , тогда .

Пусть , тогда .
Слайд 17

Пусть , тогда .

Случай 3. Уравнение разрешенное относительно х и не содержащее у: . Аналогично: ,
Слайд 18

Случай 3.

Уравнение разрешенное относительно х и не содержащее у: . Аналогично: ,

Случай 4. . Уравнения не содержащие х и у, но не обязательно разрешенные относительно у и х. (*) (**)
Слайд 19

Случай 4.

. Уравнения не содержащие х и у, но не обязательно разрешенные относительно у и х. (*) (**)

Случай 5. Уравнение Лагранжа. Уравнение, линейно относительно x и y , т.е. имеющее вид
Слайд 20

Случай 5.

Уравнение Лагранжа. Уравнение, линейно относительно x и y , т.е. имеющее вид

1-й случай . Его общий интеграл имеет вид , вместе с уравнением он дает общий интеграл уравнения Лагранжа.
Слайд 21

1-й случай .

Его общий интеграл имеет вид , вместе с уравнением он дает общий интеграл уравнения Лагранжа.

2-й случай .
Слайд 22

2-й случай .

Случай 6. Уравнение Клеро
Слайд 23

Случай 6. Уравнение Клеро

Список похожих презентаций

Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
Арифметическая и геометрическая прогрессии в заданиях ГИА

Арифметическая и геометрическая прогрессии в заданиях ГИА

Цели урока: Обобщить и систематизировать знания учащихся по данной теме. Разобрать типичные задания встречающихся в сборниках для подготовки к ГИА. ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...

Конспекты

Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:20 мая 2019
Категория:Математика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации