Презентация "Предел" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Предел" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

Высшая математика Пределы. Вычисления пределов. Работу выполнили: Сидорова Анжела Соловьева Наталья Захарова Ольга Сафонова Виктория Пискунова Наталья Руководитель: Елоевич Нина Тимофеевна. Муниципальная общеобразовательная средняя школа №2. г. Андреаполь, 2010
Слайд 1

Высшая математика Пределы. Вычисления пределов

Работу выполнили: Сидорова Анжела Соловьева Наталья Захарова Ольга Сафонова Виктория Пискунова Наталья Руководитель: Елоевич Нина Тимофеевна

Муниципальная общеобразовательная средняя школа №2

г. Андреаполь, 2010

Оглавление. Титульная страница Оглавление Вступление Предел переменной величины Основные свойства пределов Предел функции в точке Понятие о непрерывности функции Предел функции на бесконечности Замечательные пределы Заключение
Слайд 2

Оглавление

Титульная страница Оглавление Вступление Предел переменной величины Основные свойства пределов Предел функции в точке Понятие о непрерывности функции Предел функции на бесконечности Замечательные пределы Заключение

Предел переменной величины. Предел – одно из основных понятий математического анализа. Понятие предела использовалось еще Ньютоном во второй половине XVII века и математиками XVIII века, такими как Эйлер и Лагранж, однако они понимали предел интуитивно. Первые строгие определения предела дали Больца
Слайд 3

Предел переменной величины

Предел – одно из основных понятий математического анализа. Понятие предела использовалось еще Ньютоном во второй половине XVII века и математиками XVIII века, такими как Эйлер и Лагранж, однако они понимали предел интуитивно. Первые строгие определения предела дали Больцано в 1816 году и Коши в 1821 году.

1. Предел переменной величины. Пусть переменная величина x в процессе своего изменения неограниченно приближается к числу 5, принимая при этом следующие значения: 4,9; 4,99;4,999;…или 5,1; 5,01; 5,001;… В этих случаях модуль разности стремится к нулю: = 0,1; 0,01; 0,001;… Число 5 в приведенном приме
Слайд 4

1. Предел переменной величины

Пусть переменная величина x в процессе своего изменения неограниченно приближается к числу 5, принимая при этом следующие значения: 4,9; 4,99;4,999;…или 5,1; 5,01; 5,001;… В этих случаях модуль разности стремится к нулю: = 0,1; 0,01; 0,001;… Число 5 в приведенном примере называют пределом переменной величины x и пишут lim x = 5. Определение 1. Постоянная величина a называется пределом переменной x, если модуль разности при изменении x становится и остается меньше любого как угодно малого положительного числа e.

2. Основные свойства пределов. 1. Предел алгебраической суммы конченного числа переменных величин равен алгебраической сумме пределов слагаемых: lim(x + y + … + t) = lim x + lim y + … + lim t. 2. Предел произведения конечного числа переменных величин равен произведению их пределов: lim(x·y…t) = lim
Слайд 5

2. Основные свойства пределов

1. Предел алгебраической суммы конченного числа переменных величин равен алгебраической сумме пределов слагаемых: lim(x + y + … + t) = lim x + lim y + … + lim t. 2. Предел произведения конечного числа переменных величин равен произведению их пределов: lim(x·y…t) = lim x · lim y…lim t. 3. Постоянный множитель можно выносить за знак предела: lim(cx) = lim c · lim x = c lim x. Например, lim(5x + 3) = lim 5x + lim 3 = 5 lim x + 3. 4. Предел отношения двух переменных величин равен отношению пределов, если предел знаменателя не равен нулю: lim = lim y 5. Предел целой положительной степени переменной величины равен той же степени предела этой же переменной: lim = (lim x)n Например: = = x3 + 3 x2 = (-2)2 + 3·(-2)2 = -8 + 12 = 4 6. Если переменные x, y, z удовлетворяют неравенствам x и x z y

3.Предел функции в точке. Определение 2. Число b называется пределом* функции в точке a, если для всех значений x, достаточно близких к a и отличных от a, значения функции сколь угодно мало отличаются от числа b. 1.Найти: (3x2 – 2x). Решение. Используя последовательно свойства 1,3 и 5 предела, получ
Слайд 6

3.Предел функции в точке

Определение 2. Число b называется пределом* функции в точке a, если для всех значений x, достаточно близких к a и отличных от a, значения функции сколь угодно мало отличаются от числа b. 1.Найти: (3x2 – 2x). Решение. Используя последовательно свойства 1,3 и 5 предела, получим (3x2 – 2x) = (3x2) - (2x) = 3 x2 - 2 x = 3 - 2 x = 3 22 - 2·2 = 8

4. Понятие о непрерывности функции. 2. Вычислить Решение. При x = 1 дробь определена, так как ее знаменатель отличен от нуля. Поэтому для вычисления предела достаточно заменить аргумент его предельным значением. Тогда получим Указанное правило вычисления пределов нельзя применять в следующих случаях
Слайд 7

4. Понятие о непрерывности функции

2. Вычислить Решение. При x = 1 дробь определена, так как ее знаменатель отличен от нуля. Поэтому для вычисления предела достаточно заменить аргумент его предельным значением. Тогда получим Указанное правило вычисления пределов нельзя применять в следующих случаях: 1)Если функция при x = a не определена; 2)Если знаменатель дроби при подстановке x = a оказывается равным нулю; 3)Если числитель и знаменатель дроби при подстановке x = a одновременно оказывается равным нулю или бесконечности. В таких случаях пределы функций находят с помощью различных искусственных приемов.

5. Предел функции на бесконечности. 3.Найти Решение. При x знаменатель х + 5 также стремится к бесконечности, а обратная ему величина 0. Следовательно, произведение · 3 = стремится к нулю, если x . Итак, = 0
Слайд 8

5. Предел функции на бесконечности

3.Найти Решение. При x знаменатель х + 5 также стремится к бесконечности, а обратная ему величина 0. Следовательно, произведение · 3 = стремится к нулю, если x . Итак, = 0

6. Замечательные пределы. Некоторые пределы невозможно найти теми способами, которые были изложены выше. Пусть например, требуется найти . Непосредственная подстановка вместо аргумента его предела дает неопределенность вида 0/0. Невозможно также преобразовать числитель и знаменатель таким образом, ч
Слайд 9

6. Замечательные пределы

Некоторые пределы невозможно найти теми способами, которые были изложены выше. Пусть например, требуется найти . Непосредственная подстановка вместо аргумента его предела дает неопределенность вида 0/0. Невозможно также преобразовать числитель и знаменатель таким образом, чтобы выделить общий множитель, предел которого равен нулю. Поступим следующим образом. Возьмем круг с радиусом, равным 1, и построим центральный угол АОВ, равный 2х радианам. Проведем хорду АВ и касательные АD и ВD к окружности в точках А и В. Очевидно, что |AC| = |CB| = sin x, |AD| = |DB| = tg х = 1 – Первый замечательный предел. x = e 2,7182…,. x – Второй замечательный предел. Решение. Разделив числитель и знаменатель на x,получим x = ( )x = = =

7. Вычисления пределов. 1. (x2 – 7x + 4) = 32 – 7·3 + 4 = - 8. Решение. Для нахождения предела непосредственного нахождения заменим пределы функции в точке. 2. . Решение. Здесь пределы числителя и знаменателя при x равным нулю. Умножим числитель и знаменатель на выражение ,сопряженное числителю, пол
Слайд 10

7. Вычисления пределов

1. (x2 – 7x + 4) = 32 – 7·3 + 4 = - 8. Решение. Для нахождения предела непосредственного нахождения заменим пределы функции в точке. 2. . Решение. Здесь пределы числителя и знаменателя при x равным нулю. Умножим числитель и знаменатель на выражение ,сопряженное числителю, получим = = = = Следовательно,

=

Заключение. В данном проекте рассматривался наряду с теоретическим материалом и практический. В практическом применении рассмотрели всевозможные способы вычисления пределов. Изучение второго раздела высшей математики уже вызывает большой интерес, так как в прошлом году рассматривали тему «Матрицы. П
Слайд 11

Заключение

В данном проекте рассматривался наряду с теоретическим материалом и практический. В практическом применении рассмотрели всевозможные способы вычисления пределов. Изучение второго раздела высшей математики уже вызывает большой интерес, так как в прошлом году рассматривали тему «Матрицы. Применение свойств матрицы к решению систем уравнений», которая была простой, хотя бы по той причине, что получаемый результат был контролируемым. Здесь такого контроля нет. Изучение Разделов высшей математики дает свой положительный результат. Занятия по данному курсу принесли свои результаты: - изучен большой объем теоретического и практического материала; - выработано умение выбирать способ вычисления предела; - отработано грамотное использование каждого способа вычисления; - закреплено умение проектировать алгоритм задания. Мы будем продолжать изучение разделов высшей математики. Цель ее изучения состоит в том, что мы будем хорошо готовы к повторному изучению курса высшей математики.

Список похожих презентаций

Предел числовой последовательности

Предел числовой последовательности

Содержание. Понятие числовой последовательности Примеры числовых последовательностей Способы задания последовательностей Ограниченность числовых последовательностей ...
Предел последовательности чисел

Предел последовательности чисел

Определение 1. Функцию вида у= f (х), х ϵ Ν называют функцией натурального аргумента или числовой последовательностью и обозначают у = f (n) или у1, ...
Предел функции в точке

Предел функции в точке

Рассмотрим функции, графики которых изображены на следующих рисунках:. Во всех трех случаях изображена одна и та же кривая, но все же изображают они ...
Предел числовой последовательности

Предел числовой последовательности

Назовем числовой последовательностью числовую функцию, заданную на множестве натуральных чисел: Значение n будем называть номером члена , а само число ...
Предел функции в точке

Предел функции в точке

Одна и та же кривая, три разные функции. Отличие – поведение в точке х = а. f(a) – не существует, т.к. в точке х =а функция у = f(х) не определена. ...
Предел функции в бесконечности и в точке

Предел функции в бесконечности и в точке

Число А называется пределом функции у=f(x), при х стремящемся к бесконечности, если для любого, сколь угодно малого числа ε>0, найдется такое положительное ...
Предел функции

Предел функции

Содержание. Предел функции в точке Односторонние пределы Предел функции при x стремящемся к бесконечности Основные теоремы о пределах Вычисление пределов ...
Предел переменной величины

Предел переменной величины

f(x)=x+2, при х 1. f(0,9)=2,9 f(0,99)=2,99 f(0,999)=2,999 f(1,1)=3,1 f(1,01)=3,101. Определение. Постоянная величина а называется пределом переменной ...
ГИА 2013. Модуль алгебра №6

ГИА 2013. Модуль алгебра №6

ГИА – 2013 г. Модуль «Алгебра» №6. «ГИА-2013. Математика: типовые экзаменационные варианты: 30 вариантов» под редакцией А. Л. Семенова, И. В. Ященко. ...
ГИА 2013. Модуль алгебра №3

ГИА 2013. Модуль алгебра №3

Модуль «Алгебра» №3. Наибольшее число :. Повторение (4). Укажите наибольшее из чисел:. Ответ: ⎕ ⎕ ⎕ ⎕. Повторение (подсказка). Чтобы сравнить выражения, ...
ГИА 2013. Модуль алгебра №2

ГИА 2013. Модуль алгебра №2

Модуль «Алгебра» №2. Повторение (2). На координатной прямой отмечено число а. Из следующих неравенств выберите верное:. Ответ: 3. Исходя из рисунка ...
ГИА 2013. Модуль алгебра №1

ГИА 2013. Модуль алгебра №1

Модуль «Алгебра» №1. Повторение (1). Найдите значение выражения 0,5 ∙ 0,05 ∙ 0,005 . Ответ: 0,000125 0,5 ∙ 0,05 ∙ 0,005 = 1 + 3 6 000 =0,. Повторение ...
Высшая математика. Линейная алгебра

Высшая математика. Линейная алгебра

Содержание. Элементы линейной алгебры Задачи линейного программирования Графический метод решения ЗЛП Симплексный метод решения ЗЛП Двойственные задачи ...
Реляционная алгебра – механизм манипулирования реляционными данными

Реляционная алгебра – механизм манипулирования реляционными данными

Две группы операций РА. теоретико-множественные операции специальные реляционные операции. Теоретико-множественные операции. объединения отношений; ...
«Квадратичная функция» алгебра

«Квадратичная функция» алгебра

Формулы сокращенного умножения. 6. В каком случае выражение преобразовано в тождественно равное? 1) 3(x−y) = 3x−y 2) (3+x)(x−3) = 9−x2 3) (x−y)2 = ...
ГИА 2013. Модуль алгебра №8

ГИА 2013. Модуль алгебра №8

Модуль «Алгебра» №8. Повторение (4). Решите неравенство 7+2(х-4)≥х+4. Ответ: [-3;+∞). Повторение (подсказка). При решении неравенства можно переносить ...
Матричная алгебра в экономике

Матричная алгебра в экономике

Содержание:. ● Вступление ● Что такое матрицы и операции над ними ● Решение экономических задач матричным методом ● Заключение ● Список используемой ...
«Функции» алгебра

«Функции» алгебра

Производная. Производной функции f в точке х0 называется число, к которому стремится разностное отношение при Δх, стремящемся к нулю. Правила дифференцирования. ...
Синус, косинус, тангенс и котангенс, алгебра,

Синус, косинус, тангенс и котангенс, алгебра,

Синус и косинус. Что будем изучать:. Определение синуса и косинуса. Определение тангенса и котангенса. Основное тригонометрическое тождество. Примеры ...
Векторная алгебра

Векторная алгебра

Векторы. Определение. Вектором назовём направленный отрезок, т.е. отрезок прямой, ограниченный двумя точками, одна из которых называется начальной, ...

Конспекты

Предел функции в точке, свойства. Бесконечно большие и бесконечно малые функции. Непрерывность функции

Предел функции в точке, свойства. Бесконечно большие и бесконечно малые функции. Непрерывность функции

Министерство образования и науки Самарской области. . ГБОУ СПО «Безенчукский аграрный техникум». Конспект занятия. ТЕМА. Предел функции ...
Предел функции в точке

Предел функции в точке

Урок алгебры в 10 классе по теме «Предел функции в точке». Цель урока:. формирование у учащихся наглядно – интуитивных представлений о пределе ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 октября 2018
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации