- Системы линейных уравнений: методы решения

Презентация "Системы линейных уравнений: методы решения" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Системы линейных уравнений: методы решения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения. Цель: Рассмотреть понятие СЛАУ.
Слайд 1

Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения.

Цель: Рассмотреть понятие СЛАУ.

Систему m линейных уравнений с n неизвестными будем записывать в следующем виде: Здесь x1, x2, , xn – неизвестные величины; aij (i = 1,2, … , m; j =1,2, … , n) – числа, называемые коэффициентами системы (первый индекс - номер уравнения, второй — номер неизвестной); b1, b2, …, bm – числа, называемые
Слайд 2

Систему m линейных уравнений с n неизвестными будем записывать в следующем виде:

Здесь x1, x2, , xn – неизвестные величины; aij (i = 1,2, … , m; j =1,2, … , n) – числа, называемые коэффициентами системы (первый индекс - номер уравнения, второй — номер неизвестной); b1, b2, …, bm – числа, называемые свободными членами.

Решением системы будем называть упорядоченный набор чисел x1, x2, …, xn, обращающий каждое уравнение системы в верное равенство. Решить систему — значит найти все ее решения или доказать, что ни одного решения нет. Система, имеющая решение, называется совместной.
Слайд 3

Решением системы будем называть упорядоченный набор чисел x1, x2, …, xn, обращающий каждое уравнение системы в верное равенство. Решить систему — значит найти все ее решения или доказать, что ни одного решения нет. Система, имеющая решение, называется совместной.

Если система имеет только одно решение, то она называется определенной. Система, имеющая более чем одно решение, называется неопределенной (совместной и неопределенной). Если система не имеет решений, то она называется несовместной.
Слайд 4

Если система имеет только одно решение, то она называется определенной. Система, имеющая более чем одно решение, называется неопределенной (совместной и неопределенной). Если система не имеет решений, то она называется несовместной.

Система, у которой все свободные члены равны нулю (b1 = b2 =…= bn = 0), называется однородной. Однородная система всегда совместна, так как набор из n нулей удовлетворяет любому уравнению такой системы. Если число уравнений системы совпадает с числом неизвестных (m=n), то система называется квадратн
Слайд 5

Система, у которой все свободные члены равны нулю (b1 = b2 =…= bn = 0), называется однородной. Однородная система всегда совместна, так как набор из n нулей удовлетворяет любому уравнению такой системы. Если число уравнений системы совпадает с числом неизвестных (m=n), то система называется квадратной.

Две системы, множества решений которых совпадают, называются эквивалентными или равносильными .
Слайд 6

Две системы, множества решений которых совпадают, называются эквивалентными или равносильными .

Преобразование,	применение которого превращает систему в новую систему, эквивалентную исходной,	называется эквивалентным или равносильным преобразованием.
Слайд 7

Преобразование, применение которого превращает систему в новую систему, эквивалентную исходной, называется эквивалентным или равносильным преобразованием.

Общий метод решения СЛАУ. (Метод Гаусса). Если система совместна, т. е. rang A = rang A* = (r),то r-уравнений СЛАУ линейно-независимы, а остальные (n - r) являются линейными комбинациями. Решить систему значит выразить базисные неизвестные через свободные, придавая различные значения свободным неизв
Слайд 8

Общий метод решения СЛАУ. (Метод Гаусса).

Если система совместна, т. е. rang A = rang A* = (r),то r-уравнений СЛАУ линейно-независимы, а остальные (n - r) являются линейными комбинациями. Решить систему значит выразить базисные неизвестные через свободные, придавая различные значения свободным неизвестным.

Общий метод решения однородной СЛАУ. Теорема: Если ранг матрицы однородной СЛАУ = r, то система имеет (m - r) линейно - независимых решений. Опр.: Совокупность решений, т. е. совокупность называется фундаментальной системой решений однородной СЛАУ.
Слайд 9

Общий метод решения однородной СЛАУ.

Теорема: Если ранг матрицы однородной СЛАУ = r, то система имеет (m - r) линейно - независимых решений. Опр.: Совокупность решений, т. е. совокупность называется фундаментальной системой решений однородной СЛАУ.

Теорема об общем решении неоднородной СЛАУ. Теорема: Если фундаментальная система решений соотв-щей однор. СЛАУ; - некоторое решение неоднор. СЛАУ, то сумма - решение неоднор. СЛАУ. Полученное решение называется общим решением неоднородной СЛАУ.
Слайд 10

Теорема об общем решении неоднородной СЛАУ.

Теорема: Если фундаментальная система решений соотв-щей однор. СЛАУ; - некоторое решение неоднор. СЛАУ, то сумма - решение неоднор. СЛАУ. Полученное решение называется общим решением неоднородной СЛАУ.

Матричный способ решения СЛАУ. СЛАУ запишем в виде А х Х=В. Если det A≠0, то для матрицы А сущ. обратная А-1. Умножим обе части СЛАУ слева на А-1: А-1 х А х Х = А-1 х В; Е х Х = А-1 х В; Х = А-1 х В.
Слайд 11

Матричный способ решения СЛАУ.

СЛАУ запишем в виде А х Х=В. Если det A≠0, то для матрицы А сущ. обратная А-1. Умножим обе части СЛАУ слева на А-1: А-1 х А х Х = А-1 х В; Е х Х = А-1 х В; Х = А-1 х В.

Метод Крамера. СЛАУ имеет вид А х Х=В при det A≠0 ; Х=А-1 х В. х1 A11 A12 … An1 b1 х2 = A21 A22 … An2 х b2 = хn A1n A2n … Ann n х n bn n х 1 A1n х b1 + A2n х b2 + Ann х bn. A11 х b1 + A21 х b2 ……… A12 х b1 + A22 х b2 ………
Слайд 12

Метод Крамера.

СЛАУ имеет вид А х Х=В при det A≠0 ; Х=А-1 х В. х1 A11 A12 … An1 b1 х2 = A21 A22 … An2 х b2 = хn A1n A2n … Ann n х n bn n х 1 A1n х b1 + A2n х b2 + Ann х bn

A11 х b1 + A21 х b2 ……… A12 х b1 + A22 х b2 ………

1. 2. Числители - величина определителя, разложенного по первому столбцу, тогда первый столбец это элементы b1, b2 … bn, а остальные столбцы – это столбцы матрицы А и т.д. Если det A≠0, то СЛАУ имеет единственное решение и определяется формулами:
Слайд 13

1. 2.

Числители - величина определителя, разложенного по первому столбцу, тогда первый столбец это элементы b1, b2 … bn, а остальные столбцы – это столбцы матрицы А и т.д. Если det A≠0, то СЛАУ имеет единственное решение и определяется формулами:

Элементарные преобразования матрицы. 1) перемена местами двух строк; 2) умножение строки на число, отличное от нуля; 3) замена строки матрицы суммой этой строки с любой другой строкой, умноженной на некоторое число.
Слайд 14

Элементарные преобразования матрицы

1) перемена местами двух строк; 2) умножение строки на число, отличное от нуля; 3) замена строки матрицы суммой этой строки с любой другой строкой, умноженной на некоторое число.

Назовем квадратную матрицу, у которой на главной диагонали стоят числа, отличные от нуля, а под главной диагональю – нули, треугольной матрицей. Если с помощью элементарных преобразований матрицу коэффициентов квадратной системы можно привести к треугольной матрице, то система совместна и определенн
Слайд 15

Назовем квадратную матрицу, у которой на главной диагонали стоят числа, отличные от нуля, а под главной диагональю – нули, треугольной матрицей. Если с помощью элементарных преобразований матрицу коэффициентов квадратной системы можно привести к треугольной матрице, то система совместна и определенна.

Если матрицу A можно разделить вертикальной чертой на две матрицы: стоящую слева треугольную матрицу размера m и стоящую справа прямоугольную матрицу, то матрицу A назовем трапециевидной или трапецеидальной.
Слайд 16

Если матрицу A можно разделить вертикальной чертой на две матрицы: стоящую слева треугольную матрицу размера m и стоящую справа прямоугольную матрицу, то матрицу A назовем трапециевидной или трапецеидальной.

Если при преобразовании расширенной матрицы системы матрица коэффициентов приводится	к трапецеидальному виду и при этом система не получается противоречивой, то	система совместна и является неопределенной, то есть имеет бесконечно много решений.
Слайд 17

Если при преобразовании расширенной матрицы системы матрица коэффициентов приводится к трапецеидальному виду и при этом система не получается противоречивой, то система совместна и является неопределенной, то есть имеет бесконечно много решений.

Те переменные, коэффициенты при которых стоят на главной диагонали трапецеидальной матрицы (это значит, что эти коэффициенты отличны от нуля), называются базисными. Остальные неизвестные называются свободными.
Слайд 18

Те переменные, коэффициенты при которых стоят на главной диагонали трапецеидальной матрицы (это значит, что эти коэффициенты отличны от нуля), называются базисными. Остальные неизвестные называются свободными.

Если свободным неизвестным приданы	конкретные числовые значения и через них выражены базисные неизвестные, то полученное решение называется частным решением. Если свободные неизвестные выражены через параметры, то получается решение, которое называется общим решением.
Слайд 19

Если свободным неизвестным приданы конкретные числовые значения и через них выражены базисные неизвестные, то полученное решение называется частным решением. Если свободные неизвестные выражены через параметры, то получается решение, которое называется общим решением.

Если всем свободным неизвестным приданы нулевые значения, то полученное решение называется базисным. Если получены два различных набора базисных неизвестных при различных способах нахождения решения одной и той же системы, то эти наборы обязательно содержат одно и то же число неизвестных, называемое
Слайд 20

Если всем свободным неизвестным приданы нулевые значения, то полученное решение называется базисным. Если получены два различных набора базисных неизвестных при различных способах нахождения решения одной и той же системы, то эти наборы обязательно содержат одно и то же число неизвестных, называемое рангом системы.

Вопросы: 1)Когда система имеет единственное решение? 2)Какие элементарные преобразования матрицы можно делать при решении СЛАУ?
Слайд 21

Вопросы: 1)Когда система имеет единственное решение? 2)Какие элементарные преобразования матрицы можно делать при решении СЛАУ?

Список похожих презентаций

Методы решения систем линейных уравнений 1- ой степени

Методы решения систем линейных уравнений 1- ой степени

Проверка домашнего задания. Устная работа. Какие способы решения систем линейных уравнений мы знаем? Сколько их? Какой из способов самый наглядный? ...
Параллельные методы решения систем линейных уравнений

Параллельные методы решения систем линейных уравнений

Н.Новгород, 2005 г. Основы параллельных вычислений: Матричное умножение © Гергель В.П. 2 из 44. Постановка задачи Метод Гаусса Последовательный алгоритм ...
Методы решения систем линейных уравнений с двумя переменными

Методы решения систем линейных уравнений с двумя переменными

Инженер-электрик: "Это уравнения напряжения или токов в электрической цепи с активными сопротивлениями." Инженер-строитель: "Это уравнения, связывающие ...
Методы решения систем уравнений

Методы решения систем уравнений

Под кейсом понимается несколько страниц текста, материал из учебника, различные презентации, видеоматериал. Ответ:. . . Обратимся к кейсу. Если х=0, ...
Графический способ решения линейных систем уравнений

Графический способ решения линейных систем уравнений

Линейная функция – это функция вида  y=kx+b  , в котором k и b  - действительные числа. Графиком линейной функции y=kx+b  является прямая. Алгоритм ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

«Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию». Я. А. Коменский. Арксинус. ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

«Думай о смысле, а слова придут сами». Льюис Кэрролл. Методы решения тригонометрических уравнений Указать метод решения уравнения:. . . . . . Методы ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

Восемь способов решения одного тригонометрического уравнения. 1.Приведение уравнения к однородному. 2.Разложение левой части уравнения на множители. ...
Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
Аналитические методы решения логарифмических уравнений

Аналитические методы решения логарифмических уравнений

Цели урока:. Обобщить и систематизировать изученные методы решения логарифмических уравнений Выявить особенности каждого метода Выяснить, всегда ли ...
Методы решения уравнений

Методы решения уравнений

Результат учения равен произведению способности на старательность. Если старательность равна нулю, то и все произведение равно нулю. А способности ...
Методы решения уравнений высших степеней

Методы решения уравнений высших степеней

Учитель математики Мурзабаева Фарида Мужавировна. Виды уравнений высших степеней. Уравнения третьей степени. Уравнения четвертой степени. Уравнения ...
Методы решения уравнений с одной переменной

Методы решения уравнений с одной переменной

Тема урока: «Решение уравнений с одной переменной». Цели урока: закрепить знания и умения решений квадратных уравнений; повторить основные методы ...
Общие методы решения квадратных уравнений

Общие методы решения квадратных уравнений

При решении квадратных уравнений часто применяется метод разложения на множители (с помощью вынесения за скобки общего множителя, формул сокращенного ...
Общие методы решения уравнений

Общие методы решения уравнений

Обобщение и систематизация знаний об общих методах решения логарифмических, показательных, иррациональных и тригонометрических уравнений. Развитие ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

«Счастливый случай». 1 гейм «Разминка». 1. Решение уравнения вида cos x=a при |a| > 1? 2. При каком значении а, уравнение cos x =a имеет решения? ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

ЦЕЛЬ:. Систематизировать, обобщить, расширить знания и умения, связанные с применением методов решения тригонометрических уравнений. . . 1. Какие ...
Метод Гаусса решения систем линейных уравнений

Метод Гаусса решения систем линейных уравнений

Рассмотрим систему m линейных уравнений с n неизвестными:. Назовем матрицей системы матрицу, составленную из коэффициентов при неизвестных. Матрицу, ...
Методы решения иррациональных уравнений

Методы решения иррациональных уравнений

Из последнего промежутка найти наименьшее положительное целое число. I Y= II Y= III Y= IV Y= X ≥ 6 X > 0 X > -2 X ≥ 0. Найти область определения. ...
Методы решения иррациональных уравнений

Методы решения иррациональных уравнений

Метод возведения в степень. Пример 1. Ответ: 2. Пример 2. Ответ: 3. Пример 3. Метод составления смешанной системы. Ответ: 7. Решение уравнений ...

Конспекты

Методы решения систем двух линейных уравнений с двумя переменными

Методы решения систем двух линейных уравнений с двумя переменными

План- конспект урока алгебры в 7 классе по теме: «Методы решения систем двух линейных уравнений с двумя переменными». Орг. момент, сообщение ...
Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
Нестандартные методы решения уравнений и неравенств. Использование области определения функций

Нестандартные методы решения уравнений и неравенств. Использование области определения функций

Тема урока: Нестандартные методы решения уравнений и неравенств. Использование области определения функций. . ФИО (полностью). . Кривошеин ...
Общие методы решения логарифмических и показательных уравнений

Общие методы решения логарифмических и показательных уравнений

11 класс. Тема урока: Общие методы решения логарифмических. и показательных уравнений. Веками люди над их открытием трудились, Показательная ...
Общие методы решения тригонометрических уравнений

Общие методы решения тригонометрических уравнений

. ГБОУ ООШ с. Малое Ибряйкино. Похвистневского района Самарской области. Конспект урока для 10 класса на тему. «Общие методы ...
Общие методы решения тригонометрических уравнений

Общие методы решения тригонометрических уравнений

. Муниципальное общеобразовательное учреждение. Малоибряйкинская основная общеобразовательная школа. Похвистневского района Самарской области. ...
Общие методы решения уравнений

Общие методы решения уравнений

Конспект занятия по теме «Общие методы решения уравнений». 2 урока по 45 минут. Цели урока. Обучающие. : обобщить ранее накопленные теоретические ...
Общие методы решения уравнений

Общие методы решения уравнений

Разработка урока в 11 классе. . Тема урока: Общие методы решения уравнений. Цели:. Повторить и расширить сведения об уравнениях и способах ...
Основные методы решения тригонометрических уравнений

Основные методы решения тригонометрических уравнений

. МАТЕМАТИКА 11 класс. Тема: Основные методы решения тригонометрических уравнений. Цели урока:. Обобщить и систематизировать полученные знания ...
Методы решения иррациональных уравнений

Методы решения иррациональных уравнений

Урок по теме «Методы решения иррациональных уравнений» в 11 классе. . Бекиш И.И. учитель математики, 1 категории,Успенская средняя школа, район ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 июня 2019
Категория:Математика
Содержит:21 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации