- Пределы. Непрерывность функций

Презентация "Пределы. Непрерывность функций" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13

Презентацию на тему "Пределы. Непрерывность функций" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 13 слайд(ов).

Слайды презентации

Пределы. Непрерывность функций. Автор: Королёв Иван, 11 «А» класс Руководитель: Степанищева Зоя Григорьевна
Слайд 1

Пределы. Непрерывность функций

Автор: Королёв Иван, 11 «А» класс Руководитель: Степанищева Зоя Григорьевна

Введение. Цель работы: 1. Совершенствовать уровень своей математической подготовки. 2. Овладеть некоторыми вопросами математического анализа. Задачи исследования: 1. Изучить определения и свойства предела, непрерывность функции. 2. Выработать навыки нахождения пределов, построения графи-ков разрывны
Слайд 2

Введение

Цель работы: 1. Совершенствовать уровень своей математической подготовки. 2. Овладеть некоторыми вопросами математического анализа. Задачи исследования: 1. Изучить определения и свойства предела, непрерывность функции. 2. Выработать навыки нахождения пределов, построения графи-ков разрывных функций. Актуальность темы: Изучение данной темы предусматривает межпредметную связь математики и физики. Понятие предела непосредственно связано с ос-новными понятиями математического анализа – производная, инте-грал и др.

Предел переменной величины. Пределом переменной величины х называется постоянное число а, если для каждого наперед заданного произвольно малого положи-тельного числа ε можно указать такое значение переменной х, что все последующие значения будут удовлетворять неравенству |х–а|
Слайд 3

Предел переменной величины

Пределом переменной величины х называется постоянное число а, если для каждого наперед заданного произвольно малого положи-тельного числа ε можно указать такое значение переменной х, что все последующие значения будут удовлетворять неравенству |х–а|

Рассмотрим несколько примеров переменных, стремящихся к пределу. Пример 1. Доказать, что переменная хn=1+ имеет предел, равный единице. Составим разность между переменной и ее пределом: |хn–1|=|(1+ )–1|= . Для любого ε все последующие значения перемен-ной, начиная с номера n, где n > , будут удов
Слайд 4

Рассмотрим несколько примеров переменных, стремящихся к пределу. Пример 1. Доказать, что переменная хn=1+ имеет предел, равный единице. Составим разность между переменной и ее пределом: |хn–1|=|(1+ )–1|= . Для любого ε все последующие значения перемен-ной, начиная с номера n, где n > , будут удовлетворять условию |хn–1|

Предел функции. Пределом функции ƒ(х) при х→а называется число b, если для любого положительного ε можно указать такое положительное число δ, что для любого х, удовлетворяющего неравенству |х–а|а, то пишут ƒ(х)=b2. Числа b1 и b2 называются соот-ветственно левым и правым пределом функции у=ƒ(х).
Слайд 5

Предел функции

Пределом функции ƒ(х) при х→а называется число b, если для любого положительного ε можно указать такое положительное число δ, что для любого х, удовлетворяющего неравенству |х–а|а, то пишут ƒ(х)=b2. Числа b1 и b2 называются соот-ветственно левым и правым пределом функции у=ƒ(х).

Пределы. Непрерывность функций Слайд: 6
Слайд 6
Основные свойства пределов. Свойство 1. Предел суммы нескольких переменных равен сумме пределов этих переменных: lim(a1+a2+…+an)= lim a1+lim a2+…+lim an. Свойство 2. Предел произведения нескольких переменных равен произведению пределов этих переменных: lim(a1∙a2∙…∙an)= lim a1∙lim a2∙…∙lim an. Свойст
Слайд 7

Основные свойства пределов

Свойство 1. Предел суммы нескольких переменных равен сумме пределов этих переменных: lim(a1+a2+…+an)= lim a1+lim a2+…+lim an. Свойство 2. Предел произведения нескольких переменных равен произведению пределов этих переменных: lim(a1∙a2∙…∙an)= lim a1∙lim a2∙…∙lim an. Свойство 3. Предел частного двух переменных равен част-ному пределов этих переменных, если предел знаменателя отли-чен от нуля: lim = , если lim b≠0. Свойство 4. Предел степени равен пределу основания, воз-веденного в степень предела показателя: lim ab=(lim a)lim b.

Первый замечательный предел: Второй замечательный предел: Далее я решил привести некоторые часто встречающиеся типы примеров, рассмотренных мной в ходе работы: 1. 2.
Слайд 8

Первый замечательный предел: Второй замечательный предел: Далее я решил привести некоторые часто встречающиеся типы примеров, рассмотренных мной в ходе работы: 1. 2.

3. 4.
Слайд 9

3. 4.

5. 6. Пусть и=2+а, а→0.
Слайд 10

5. 6. Пусть и=2+а, а→0.

Непрерывность функций. Функция называется непрерывной в точке х0, если она определена в некоторой окрестности этой точки и существует предел функции при х→х0, равный значению самой функции в этой точке. Функция на-зывается непрерывной в некоторой области, если она непрерывна в каждой точке этой обла
Слайд 11

Непрерывность функций

Функция называется непрерывной в точке х0, если она определена в некоторой окрестности этой точки и существует предел функции при х→х0, равный значению самой функции в этой точке. Функция на-зывается непрерывной в некоторой области, если она непрерывна в каждой точке этой области. Точка х0, принадлежащая области опреде-ления функции, называется точкой разрыва, если в этой точки нару-шается условие непрерывности. Если существуют конечные левый и правый пределы функции в точке х0, а функции определена в этой точке, но эти три числа не равны между собой, то точка х0 называется точкой разрыва I рода. Точки разрыва, не являющиеся точками разры-ва I рода, называются точками разрыва II рода.

Пример 1. Рассмотрим функцию
Слайд 12

Пример 1. Рассмотрим функцию

Данная функция имеет разрыв в точке х=3. Рассмот-рим односторонние пределы: Функция имеет конечный предел слева, предел же справа является бесконечным. Точка х=3 будет точкой разрыва II рода. Пример 2. Определить точки разрыва функции
Слайд 13

Данная функция имеет разрыв в точке х=3. Рассмот-рим односторонние пределы: Функция имеет конечный предел слева, предел же справа является бесконечным. Точка х=3 будет точкой разрыва II рода.

Пример 2. Определить точки разрыва функции

Список похожих презентаций

Пределы последовательностей и функций

Пределы последовательностей и функций

Цели:. Сформировать понятие предела последовательности, функции; Ввести понятие сходящихся и расходящихся последовательностей, горизонтальной асимптоты; ...
Пределы функций

Пределы функций

Введение. Назначение курса. Математический анализ является фундаментальной дисциплиной, составляющей основу математического образования. Курс предназначен ...
Непрерывность функций

Непрерывность функций

Непрерывность. Функция f(x), определенная на множестве Х, называется непрерывной в точке , если 1)она определена в этой точке, 2) существует и 3). ...
Преобразования графиков функций

Преобразования графиков функций

A B C x y 0 1. В качестве исходного графика функции y=f(x) выберем ломанную, состоящую из двух звеньев, заданных точками A(-5;-2), B(-2;4) и C(2;2). ...
Преобразование графиков функций, содержащих модуль

Преобразование графиков функций, содержащих модуль

y = f(x) + a y = f(x) y = f(x) - a +a -a. Преобразование графиков функций. Т1. Параллельный перенос по оси Оу. y = f(x) график исходной функции. y ...
Преобразование графиков функций

Преобразование графиков функций

Дорогу осилит идущий, а математику – мыслящий Т.Эдисон. Цель урока. Изучить способ построения графиков функций y = f(kx), y = mf(x). Преобразование: ...
Алгебра функций

Алгебра функций

Конспект занятия. Учитель Винник Надежда Анатольевна Предмет: Элективный курс по математике «Алгебра функций» Тип занятия: занятие-практикум Тема ...
Свойства функций

Свойства функций

Обобщить и систематизировать знания по теме «Исследование функций». 1.Повторить схему исследования функции. 2.Развивать умение применять теоретические ...
Свойства производной. Построение графиков функций

Свойства производной. Построение графиков функций

Построение графика функции, заданной формулой, начинают с её исследования 1) Находят область определения функции 2) Выясняют, является ли функция ...
Готовимся к ОГЭ – 2018 Задание 23 Графики функций

Готовимся к ОГЭ – 2018 Задание 23 Графики функций

Цель урока: подготовка к ОГЭ; отработка умений решать задачи, связанные с построением графиков различных функций. Постройте график функции и определите, ...
ГИА-2012. Решение задач по теме "Чтение графиков функций"

ГИА-2012. Решение задач по теме "Чтение графиков функций"

График какой из приведенных ниже функций изображен на рисунке? Задание 17 (№ 197785). Задание 17 (№ 193087). Задание 17 (№ 197695). Задание 17 (№ ...
Возрастание и убывание функций

Возрастание и убывание функций

Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен график функции, определенной на отрезке [-1;10]. Эта функция ...
Виды функций

Виды функций

План. Величины постоянные и переменные Понятие функции: определение функции область определения, значения сложная функция способы задания функции ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Веселый тест. Интеллектуальная разминка. 1. Какие числа употребляются при счете а)природные; б)натуральные; в)искусственные; 2. Как называют верхний ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Какие функции вам известны? Какой формулой задается каждая из этих функций? Как называется переменная x и y в формуле, задающий функцию? Что является ...
Применение производной к исследованию функций

Применение производной к исследованию функций

Теория без практики мертва или бесплодна, практика без теории невозможна или пагубна. Для теории нужны знания, для практики, сверх всего того, и умение. ...
Применения производной к исследованию функций

Применения производной к исследованию функций

Оглавление. Схема исследования функций; Признак возрастания (убывания) функции: Достаточный признак возрастания функции; Достаточный признак убывания ...
Графики квадратичных функций

Графики квадратичных функций

Этапы рассмотрения Простейшие примеры Свойства графиков квадратичных функций Графики и коэффициенты уравнений – простейшие закономерности Динамические ...
Решение задач на построение графиков алгебраических функций

Решение задач на построение графиков алгебраических функций

Анализ содержания материала. Кто не знает в какую гавань он плывет, для того нет попутного ветра. Сенека. Главной целью данной темы является: научить ...

Конспекты

Применение производной для исследования функций на монотонность и экстремумы

Применение производной для исследования функций на монотонность и экстремумы

Открытый урок по математике в 10 классе по теме:. «Применение производной для исследования функций на монотонность и экстремумы». Цели и задачи:. ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Математику уже затем следует учить, что она ум в порядок приводит. М. В. Ломоносов. Урок математики (продолжительность 1ч 20мин). Тема. ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Конспект урока по алгебре в 10 классе. Васильева Екатерина Сергеевна. ,. . учитель математики. ОГБОУ «Смоленская специальная (коррекционная). ...
Свойства функций. Чтение графиков функций

Свойства функций. Чтение графиков функций

Муниципальное бюджетное образовательное учреждение «Усть – Вельская СОШ № 23». Свойства функций. Чтение графиков функций. Конспект урока по алгебре. ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Учитель: Короленко Евгения Николаевна. Конспект урока по алгебре 7 класса. Тема «Взаимное расположение графиков линейных функций». Цели:. Образовательные:. ...
Распознавание графиков линейной, квадратичной функций и обратной пропорциональности

Распознавание графиков линейной, квадратичной функций и обратной пропорциональности

МБОУ «Кимовская средняя общеобразовательная школа Спасского муниципального района РТ». Урок по алгебре в 9 классе на тему. «Распознавание ...
Свойства функций

Свойства функций

Тема урока:. Свойства функций. Предварительная подготовка к уроку:. обучающиеся должны знать следующие темы: «Линейная функция и ее график», «Обратная ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

ПЛАН-КОНСПЕКТ УРОКА Конспект урока по теме: «Взаимное расположение графиков линейных функций». . ФИО (полностью). . Чичерова Татьяна ...
Вычисление производных функций

Вычисление производных функций

Технологическая карта урока. Ф.И.О. учителя: Терентьева Елена Аркадьевна. Класс: 11 общеобразовательной школы при ФКУ ИК. Дата: 17.12.2014. Предмет. ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Тема урока: « Взаимное расположение графиков линейных функций». Цель урока:. закрепить умения и навыки нахождения углового коэффициента, познакомить ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Математика
Содержит:13 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации