- Проверка корней тригонометрического уравнения

Презентация "Проверка корней тригонометрического уравнения" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9

Презентацию на тему "Проверка корней тригонометрического уравнения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 9 слайд(ов).

Слайды презентации

Проверка корней тригонометрического уравнения. Учитель математики МБОУ «Тумакская СОШ» Сундутова К. М.
Слайд 1

Проверка корней тригонометрического уравнения

Учитель математики МБОУ «Тумакская СОШ» Сундутова К. М.

В основу метода проверки корней тригонометрического уравнения следует положить понятие периода уравнения. Пусть дано, например, уравнение: Легко заметить, что периодом этого уравнения может служить угол 180°. Действительно, cos 4(х+180°)=cos (4х + 2 *360°) = cos 4х, sin 2(х+180°)= sin ( 2х + 360°)=
Слайд 2

В основу метода проверки корней тригонометрического уравнения следует положить понятие периода уравнения. Пусть дано, например, уравнение: Легко заметить, что периодом этого уравнения может служить угол 180°. Действительно, cos 4(х+180°)=cos (4х + 2 *360°) = cos 4х, sin 2(х+180°)= sin ( 2х + 360°)= sin 2х и т.д.

Чтобы найти период тригонометрического уравнения, достаточно найти периоды каждой функции, входящей в это уравнение , а затем отыскать их наименьшее общее кратное. Чтобы найти, пользуясь этим правилом , период вышеприведенного тригонометрического уравнения, надо рассуждать следующим образом: так как
Слайд 3

Чтобы найти период тригонометрического уравнения, достаточно найти периоды каждой функции, входящей в это уравнение , а затем отыскать их наименьшее общее кратное. Чтобы найти, пользуясь этим правилом , период вышеприведенного тригонометрического уравнения, надо рассуждать следующим образом: так как период каждой из функций sin 4х и cos 4х равен =90°, а период каждой из функций sin 2х и cos 2х есть 360°̷ 2=180° , то периодом уравнения будет наименьшее общее кратное углов 90° и 180°, то есть 180°

Пример. Решить уравнение: cos 2х + 3sin х = 2 (1) и проверить найденные корни. Имеем: (1-2sin²х)+3sin х=2, 2sin²х - 3sin х+1=0. Отсюда, sin х1=1, sin х2 =1/2 х1= 360°n +90°, х2= 180°n+ (-1)ⁿ 30°
Слайд 4

Пример. Решить уравнение: cos 2х + 3sin х = 2 (1) и проверить найденные корни. Имеем: (1-2sin²х)+3sin х=2, 2sin²х - 3sin х+1=0. Отсюда, sin х1=1, sin х2 =1/2 х1= 360°n +90°, х2= 180°n+ (-1)ⁿ 30°

Полученное множество корней бесконечно. Чтобы проверить все корни, достаточно произвести проверку только тех из них, которые лежат в пределах одного периода уравнения. Так как периодом уравнения (1) служит угол в 360°, то проверить нужно лишь корни, которые удовлетворяют неравенству: -180°
Слайд 5

Полученное множество корней бесконечно. Чтобы проверить все корни, достаточно произвести проверку только тех из них, которые лежат в пределах одного периода уравнения. Так как периодом уравнения (1) служит угол в 360°, то проверить нужно лишь корни, которые удовлетворяют неравенству: -180°

После подстановки их в исходное уравнение (1) найдем, что каждый из них обращает это уравнение в верное числовое равенство. Действительно, сos180° + 3sin90°=-1+3 = 2, cos60° + 3sin30°= + = 2, cos 300° + 3sin150°= + =2.
Слайд 6

После подстановки их в исходное уравнение (1) найдем, что каждый из них обращает это уравнение в верное числовое равенство. Действительно, сos180° + 3sin90°=-1+3 = 2, cos60° + 3sin30°= + = 2, cos 300° + 3sin150°= + =2.

Есть одно затруднение, с которым сталкиваются: иногда общий вид углов, правильно найденный при решении тригонометрического уравнения, не совпадает с общим видом углов, указанным в ответе к задаче. Порой возникает сомнение в правильности своего решения. Рассеять это сомнение можно только посредством
Слайд 7

Есть одно затруднение, с которым сталкиваются: иногда общий вид углов, правильно найденный при решении тригонометрического уравнения, не совпадает с общим видом углов, указанным в ответе к задаче. Порой возникает сомнение в правильности своего решения. Рассеять это сомнение можно только посредством доказательства, что множество всех найденных корней и множество всех корней, определяемое общей формулой в ответе задачи, между собой совпадают.

Допустим, что при решении уравнения sin² - cos² = cos получены корни: х1= 720°n ± 120°, х2= 360°(2n+1), а ответ задачи дан в другой форме: х= 120°(2n+1).
Слайд 8

Допустим, что при решении уравнения sin² - cos² = cos получены корни: х1= 720°n ± 120°, х2= 360°(2n+1), а ответ задачи дан в другой форме: х= 120°(2n+1).

Для того, чтобы убедиться в равносильности того и другого ответа, найдем сначала период уравнения (он равен 720°), а затем отыщем в обоих случаях корни , лежащие в пределах этого периода, то есть удовлетворяющие неравенству: -360°
Слайд 9

Для того, чтобы убедиться в равносильности того и другого ответа, найдем сначала период уравнения (он равен 720°), а затем отыщем в обоих случаях корни , лежащие в пределах этого периода, то есть удовлетворяющие неравенству: -360°

Список похожих презентаций

Формула корней квадратного уравнения

Формула корней квадратного уравнения

Сегодня на уроке мы будем:. записывать квадратные уравнения; вспоминать формулы нахождения корней квадратного уравнения; решать квадратные уравнения ...
7 способов решения тригонометрического уравнения

7 способов решения тригонометрического уравнения

Математики видят ее в:. гармонии чисел и форм, геометрической выразительности, стройности математических формул, решении задач различными способами, ...
Формула корней квадратного уравнения. 8-й класс

Формула корней квадратного уравнения. 8-й класс

Тема урока: Формула решения квадратного уравнения. Приобретать знания – это храбрость. Приумножать знания - это мудрость. А умело применять -великое ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Вы хотите научиться решать квадратные уравнения? ДА НЕТ. . . Содержание. Определение квадратного уравнения Дискриминант квадратного уравнения Формула ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Устный опрос. 1.Дайте определение квадратного уравнения,приведите примеры. 2.Назовите коэффициенты а,в,с в уравнениях: 3x2-5x+2=0; -5x2+3x-7=0, x2+2x=0; ...
Формулы корней квадратного уравнения

Формулы корней квадратного уравнения

Формулы корней квадратного уравнения. ах2+bx+c=0. D=b2 - 4ac - дискриминант. Если D>0, то уравнение имеет 2 корня. 2. Если D=0, то уравнение имеет ...
Проверка качества уравнения регрессии

Проверка качества уравнения регрессии

Скорректированный (улучшенный) коэффициент множественной детерминации. где n – число наблюдений, m – число параметров при переменных х. Чем больше ...
Технологическая карта урока. Способы отбора корней в тригонометрических уравнениях

Технологическая карта урока. Способы отбора корней в тригонометрических уравнениях

Технологическая карта урока. Математика,10 класс; (технология системно-деятельностного подхода). Планируемый результат: УУД___ Личностные: умение ...
Отбор корней в тригонометрических уравнениях

Отбор корней в тригонометрических уравнениях

Расскажем, как можно решить такую проблему. Первый метод нахождения подходящих корней заключатся в решении диофантовых уравнений с целыми коэффициентами ...
Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения

Уравнение первого порядка. Функциональное уравнение F(x,y,y) = 0 или y= f(x,y), связывающее между собой независимую переменную, искомую функцию ...
Урок Логарифмические уравнения

Урок Логарифмические уравнения

logax = b x > 0 a > 0 a ≠ 1. НАЙДИТЕ ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ УРАВНЕНИЙ. 1.logx5 = 1 2.logx(x2-1) = 0 3.log5(2x+1) = log5(x+2). ОПРЕДЕЛИТЕ МЕТОДЫ ...
Тригонометрические уравнения

Тригонометрические уравнения

Цели урока:. Повторить основные формулы и методы решения тригонометрических уравнений; Закрепить умения и навыки решения тригонометрических уравнений;. ...
Решение уравнения

Решение уравнения

Если ты услышишь, что кто-то не любит математику, не верь. Её нельзя не любить - её можно только не знать. уравнение вида ах2 + вх +с = 0, где х –переменная, ...
Равносильные уравнения и неравенства

Равносильные уравнения и неравенства

Два неравенства f1(x)>g1(x) и f2(x)>g2(x) или два уравнения f1(x) = g1(x) и f2(x) = g2(x) называются равносильными, если каждое решение первого неравенства ...
Понятие квадратного уравнения

Понятие квадратного уравнения

определение. Уравнение вида ах2+вх+с=0, где а,в,с – числа, а≠0, называется квадратным. Какие из уравнений являются квадратными. 1. 2х2+7х-3=0 2. 5х-7=0 ...
Показательные уравнения

Показательные уравнения

“Метод решения хорош, если с самого начала мы можем предвидеть – и далее подтвердить, что следуя этому методу, мы достигнем цели”. (Г.Лейбниц). Решите ...
Дифференциальные уравнения высших порядков

Дифференциальные уравнения высших порядков

1. Общие сведения. Определение. Дифференциальное уравнение содержащее производную функции двух и более порядков, называется дифференциальным уравнением ...
Дифференциальные уравнения второго порядка

Дифференциальные уравнения второго порядка

y’’ = f(x,y,y’). y = (x,C’,C’’), Общее решение. где С’,С’’ - независимые постоянные,. Тогда начальные условия: у = у0 y/(х = х0) = y/0 tg 0 = y/0. ...
Диофантовы уравнения

Диофантовы уравнения

Цели и задачи. Определение диофантова уравнения Биография Диофанта Диофантовые уравнения первой степени Диофантовые уравнения высших степеней Проект ...
Диофантовы уравнения

Диофантовы уравнения

СКОЛЬКО РЕШЕНИЙ ИМЕЕТ ДАННОЕ УРАВНЕНИЕ? (2х+у)(5х+3у)=7. 3) Не имеет решений. 4) Бесконечно много решений. Следующее задание. (3х+7у)(х-у)=13 1) 2 ...

Конспекты

Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Формула корней квадратного уравнения. Алгебра, 8 класс. Автор: Критинина О.М. . – учитель математики МКОУ БООШ №5. Бутурлиновского района. ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Краткосрочное планирование по математике. Предмет. алгебра. Четверть. 1. Урок № 2 Класс. 8. . Дата 17.11.14г. . Тема урока. . ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Урок по теме «Решение квадратных уравнений по формуле»(слайд 1). Цели урока:. познакомить с формулой корней квадратного уравнения и учить применять ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

. “… разных детей и учить надо по-разному,потому что каждый по-своему воспринимает информацию”Гарднер. . . Специфика математики как учебного ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Тема урока: «Формула корней квадратного уравнения». «Дорогу осилит идущий,. . а математику мыслящий». Цели урока:. выявить уровень усвоения ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Урок по теме. . «Формула корней квадратного уравнения. ». Организационная информация. Тема урока:. . «Формула корней квадратного уравнения. ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Проект урока математики /алгебры/ - 8 класс / на основе технологии модерации;. в контексте требований ФГОС ООО /. Учитель: Ладанова Ирина Владимировна. ...
Формулы корней квадратного уравнения

Формулы корней квадратного уравнения

Открытый урок по алгебре. «. Формулы корней. квадратного уравнения. ». 8 класс. Подготовила и провела:. . учитель математики. . ...
Отбор корней в тригонометрических уравнениях

Отбор корней в тригонометрических уравнениях

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ. «КАЧУЛЬСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА». План-конспект урока. . математики ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 мая 2019
Категория:Математика
Содержит:9 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации