- Диофантовы уравнения

Презентация "Диофантовы уравнения" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30

Презентацию на тему "Диофантовы уравнения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 30 слайд(ов).

Слайды презентации

Диофантовы уравнения.
Слайд 1

Диофантовы уравнения.

Цели и задачи. Определение диофантова уравнения Биография Диофанта Диофантовые уравнения первой степени Диофантовые уравнения высших степеней Проект учащихся «Метод бесконечного спуска» Другие методы решения диофантовых уравнений. Содержание.
Слайд 2

Цели и задачи. Определение диофантова уравнения Биография Диофанта Диофантовые уравнения первой степени Диофантовые уравнения высших степеней Проект учащихся «Метод бесконечного спуска» Другие методы решения диофантовых уравнений

Содержание.

Цели урока: Образовательные: 1.Познакомить учащихся с уравнениями, которые решаются в целых числах. 2.Организовать самостоятельный поиск решений диофантовых уравнений. 3.Рассмотреть различные приёмы решения. 4.Научить решать текстовые задачи, по которым можно составить диофантово уравнение. Развиваю
Слайд 3

Цели урока:

Образовательные: 1.Познакомить учащихся с уравнениями, которые решаются в целых числах. 2.Организовать самостоятельный поиск решений диофантовых уравнений. 3.Рассмотреть различные приёмы решения. 4.Научить решать текстовые задачи, по которым можно составить диофантово уравнение. Развивающие. 1. Формирование умений обобщать, сравнивать, оценивать, контролировать, анализировать, делать выводы, 2. Развитие познавательных возможностей, творческих способностей, креативности личностных качеств, 3.Организация способности общения (живого, виртуального, обоюдного, группового и т.д.),. 4. Развитие инициативы, познавательного интереса, 5. Обучение методам исследовательского поиска, 6. Развитие мыслительной деятельности, 7.Развитие практической направленности изучаемого материала 8. Привитие любви к математике

Задача. У мальчика было 50 р., на которые он хотел купить почтовые марки. В киоске имелись марки по 4 р. и по 3 р., но у киоскера совсем не было сдачи. Помогите мальчику и киоскеру выйти из создавшегося затруднения.
Слайд 4

Задача.

У мальчика было 50 р., на которые он хотел купить почтовые марки. В киоске имелись марки по 4 р. и по 3 р., но у киоскера совсем не было сдачи. Помогите мальчику и киоскеру выйти из создавшегося затруднения.

Решение. Пусть марок по 4 р. х штук, по 3 р. – у штук. Всего имеется 50 р., отсюда уравнение: 4 х + 3 у = 50 Эта задача имеет не одно, а несколько решений.
Слайд 5

Решение. Пусть марок по 4 р. х штук, по 3 р. – у штук.

Всего имеется 50 р., отсюда уравнение: 4 х + 3 у = 50 Эта задача имеет не одно, а несколько решений.

Первым начал рассматривать такие уравнения Диофант (II – III вв. до нашей эры). Он рассматривал уравнения, которые сегодня мы записали бы, например, так: ax + by = c; (1) где a, b и c целые числа, и ответ должен быть дан только в целых числах. Такие уравнения называют «диофантовыми».
Слайд 6

Первым начал рассматривать такие уравнения Диофант (II – III вв. до нашей эры). Он рассматривал уравнения, которые сегодня мы записали бы, например, так: ax + by = c; (1) где a, b и c целые числа, и ответ должен быть дан только в целых числах. Такие уравнения называют «диофантовыми».

Диофант пытался ответить на следующий вопрос: «Дано уравнение с целыми коэффициентами. Имеет ли оно целые решения?» Диофантовы уравнения - алгебраические уравнения или их системы с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или ра
Слайд 7

Диофант пытался ответить на следующий вопрос: «Дано уравнение с целыми коэффициентами. Имеет ли оно целые решения?» Диофантовы уравнения - алгебраические уравнения или их системы с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения. Примеры диофантовых уравнений: ax+by=c, x2+y2=d2.

Биографических данных о древнегреческом ученом-математике Диофанте из Александрии практически не сохранилось. До наших времен дошла лишь часть математического трактата Диофанта "Арифметика", 6 книг из 13, а также отрывки книги о многоугольных числах. В "Арифметике", Диофант излаг
Слайд 8

Биографических данных о древнегреческом ученом-математике Диофанте из Александрии практически не сохранилось. До наших времен дошла лишь часть математического трактата Диофанта "Арифметика", 6 книг из 13, а также отрывки книги о многоугольных числах. В "Арифметике", Диофант излагал начала алгебры, привел множество задач, сводящихся к неопределенным уравнениям различных степеней, и отметил методы нахождения решений таких уравнений в рациональных положительных числах. Сочинения Диофанта были отправной точкой для теоретико-числовых исследований П. Ферма, Л. Эйлера, К. Гаусса и других математиков. Именем Диофанта названы два больших раздела теории чисел - теория диофантовых уравнений и теория диофантовых приближений.

Рассмотрим линейное диофантово уравнение 2х + 3у = 1. Найдите целые решения. Одно из решений – пара чисел х = 5, у = -3 Проверка: 2 · 5 + 3 · (-3) = 1 Любое решение диофантова уравнения называется частным решением
Слайд 9

Рассмотрим линейное диофантово уравнение 2х + 3у = 1. Найдите целые решения. Одно из решений – пара чисел х = 5, у = -3 Проверка: 2 · 5 + 3 · (-3) = 1 Любое решение диофантова уравнения называется частным решением

При с = 0 уравнение (1) имеет вид ах + bу = 0 и называется однородным диофантовым уравнением. Пример. 2х + 3у = 0 2х = -3у Левая часть равенства делится на 2, а правая – на 3. Числа 2 и 3 взаимно просты. Поэтому у = 2n, x = -3n, где
Слайд 10

При с = 0 уравнение (1) имеет вид ах + bу = 0 и называется однородным диофантовым уравнением. Пример. 2х + 3у = 0 2х = -3у Левая часть равенства делится на 2, а правая – на 3. Числа 2 и 3 взаимно просты. Поэтому у = 2n, x = -3n, где

В общем виде решением уравнения ах + bу = 0 является пара (-b n, an) Общим решением диофантова уравнения 2х + 3у = 1 является х = 5 – 3n, y = -3 + 2n,
Слайд 11

В общем виде решением уравнения ах + bу = 0 является пара (-b n, an) Общим решением диофантова уравнения 2х + 3у = 1 является х = 5 – 3n, y = -3 + 2n,

Работа в группах. 1 группа. Предложите как можно подобрать частное решение уравнения 31х + 11 у = 1 2 группа. Решите уравнение: 6х + 9у = 2 3 группа. Решите уравнение: 6х + 9у = 3 4 группа. Решите уравнение:2х + 3у = 7
Слайд 12

Работа в группах.

1 группа. Предложите как можно подобрать частное решение уравнения 31х + 11 у = 1 2 группа. Решите уравнение: 6х + 9у = 2 3 группа. Решите уравнение: 6х + 9у = 3 4 группа. Решите уравнение:2х + 3у = 7

= 5·(31 – 11 · 2) – 4 · 11= 5 · 31+ 11· (- 14). х=5; у =- 14(частное решение). Проверка. Группа 1. Частное решение уравнения 31х + 11 у = 1 можно найти с помощью алгоритма Евклида: 31 11 22 2 11 9 9 1 9 2 8 4 1. 1 = 9 – 4 · 2 2 = 11 – 9 · 1 9 = 31 – 11 · 2 подставим. 1 = 9 – 4 ·(11 – 9) = 5 · 9 – 4
Слайд 13

= 5·(31 – 11 · 2) – 4 · 11= 5 · 31+ 11· (- 14). х=5; у =- 14(частное решение)

Проверка.

Группа 1. Частное решение уравнения 31х + 11 у = 1 можно найти с помощью алгоритма Евклида: 31 11 22 2 11 9 9 1 9 2 8 4 1

1 = 9 – 4 · 2 2 = 11 – 9 · 1 9 = 31 – 11 · 2 подставим

1 = 9 – 4 ·(11 – 9) = 5 · 9 – 4 ·11

Группа 2. 6х + 9у = 2 (6х + 9у) ⫶ 3; 2 не делится на 3⟾ это уравнение не имеет решений. Группа 3. 6х + 9у = 3. Разделим обе части уравнения на 3. 2х + 3у = 1. Частное решение: х = 5; у = - 3. 2х + 3у = 2 ∙ 5 + 3 ∙ (-3) 2 (х – 5) + 3 (у + 3) = 0. Сделаем замену: х´= х – 5, у´= у + 3; 2х´ + 3у´= 0; х´
Слайд 14

Группа 2. 6х + 9у = 2 (6х + 9у) ⫶ 3; 2 не делится на 3⟾ это уравнение не имеет решений. Группа 3. 6х + 9у = 3. Разделим обе части уравнения на 3. 2х + 3у = 1. Частное решение: х = 5; у = - 3. 2х + 3у = 2 ∙ 5 + 3 ∙ (-3) 2 (х – 5) + 3 (у + 3) = 0. Сделаем замену: х´= х – 5, у´= у + 3; 2х´ + 3у´= 0; х´=-3n, у´=2n х = 5 + х´= 5 – 3n; у = -3 + у´= -3 + 2n. Ответ: (5 – 3n; -3 + 2n),

Группа 4. 2х + 3у = 7 Частное решение х = 2; у = 1 Решение соответствующего однородного уравнения: х = 3n; у = - 2n. Ответ: (2 + 3n; 1 - 2n),
Слайд 15

Группа 4. 2х + 3у = 7 Частное решение х = 2; у = 1 Решение соответствующего однородного уравнения: х = 3n; у = - 2n. Ответ: (2 + 3n; 1 - 2n),

Другой способ решения. 2х + 3у = 7 х = 3 – у + ; = n. у = 1 – 2n ; х = 3 – (1 – 2n) + n = 2 + 3n Ответ: (2 + 3n; 1 – 2n),
Слайд 16

Другой способ решения.

2х + 3у = 7 х = 3 – у + ; = n

у = 1 – 2n ; х = 3 – (1 – 2n) + n = 2 + 3n Ответ: (2 + 3n; 1 – 2n),

Диофантовы уравнения высших степеней. 1. Метод разложения на множители. Задача 1. Доказать: что уравнение (x - y)3 + (y - z)3 + (z - x)3 = 30 не имеет решений в целых числах. Решение: Разложив левую часть на множители, приведем уравнение к виду (x - y)(y - z)(z - x) = 10. Заметим, что (x - y) + (y -
Слайд 17

Диофантовы уравнения высших степеней.

1. Метод разложения на множители

Задача 1. Доказать: что уравнение (x - y)3 + (y - z)3 + (z - x)3 = 30 не имеет решений в целых числах. Решение: Разложив левую часть на множители, приведем уравнение к виду (x - y)(y - z)(z - x) = 10. Заметим, что (x - y) + (y - z) + (z - x) = 0. С другой стороны, делителями 10 являются числа ±1, ±2, ±5, ±10. Нетрудно проверить, что сумма любых трех чисел из этого множества, дающих в произведении 10, не будет равняться 0.

Задача 2. Решите уравнение в целых числах : 3ху + 2х + 3у = 0 Решение: 3ху + 2х + 3у + 2 = 2 3у (х + 1) + 2 (х + 1) = 2 (3у + 2)(х + 1) = 2 3у + 2 = 2 х + 1 = 1 3у + 2 = 1 х + 1 = 2 3у + 2 = -2 х + 1 = - 1 3у + 2 = -1 х + 1 = -2 Решите системы и отберите целые решения. Ответ: (0;0); (-3; -1)
Слайд 18

Задача 2. Решите уравнение в целых числах : 3ху + 2х + 3у = 0 Решение: 3ху + 2х + 3у + 2 = 2 3у (х + 1) + 2 (х + 1) = 2 (3у + 2)(х + 1) = 2 3у + 2 = 2 х + 1 = 1 3у + 2 = 1 х + 1 = 2 3у + 2 = -2 х + 1 = - 1 3у + 2 = -1 х + 1 = -2 Решите системы и отберите целые решения

Ответ: (0;0); (-3; -1)

Проект учащихся «Метод бесконечного спуска»
Слайд 19

Проект учащихся «Метод бесконечного спуска»

2. Метод «бесконечного спуска» Предположим, что уравнение имеет решение, строим бесконечный процесс, в то время как по смыслу задачи этот процесс должен на чём-то закончиться. Часто метод бесконечного спуска применяется в более простой форме. Предположим, что мы уже добрались до естественного конца,
Слайд 20

2. Метод «бесконечного спуска» Предположим, что уравнение имеет решение, строим бесконечный процесс, в то время как по смыслу задачи этот процесс должен на чём-то закончиться. Часто метод бесконечного спуска применяется в более простой форме. Предположим, что мы уже добрались до естественного конца, и видим, что «остановиться» невозможно.

Историческая справка. Метод бесконечного спуска изобрели, по-видимому, древнегреческие математики. Метод бесконечного спуска был существенно развит Пьером Ферма. Есть основания полагать, что Ферма пытался доказывать свою Великую теорему именно этим методом.
Слайд 21

Историческая справка. Метод бесконечного спуска изобрели, по-видимому, древнегреческие математики. Метод бесконечного спуска был существенно развит Пьером Ферма. Есть основания полагать, что Ферма пытался доказывать свою Великую теорему именно этим методом.

Несмотря на отсутствие многих важных деталей в беглых заметках Ферма, в них отчетливо просматривался один из способов доказательства от противного, известный под названием метода бесконечного спуска. Чтобы доказать, что уравнение не допускает решения в целых числах, Ферма начал с предположения о сущ
Слайд 22

Несмотря на отсутствие многих важных деталей в беглых заметках Ферма, в них отчетливо просматривался один из способов доказательства от противного, известный под названием метода бесконечного спуска. Чтобы доказать, что уравнение не допускает решения в целых числах, Ферма начал с предположения о существовании гипотетического решения в целых числах x = X1, y = Y1, z = Z1. При изучении свойств чисел (X1, Y1, Z1) Ферма показал, что если бы такое гипотетическое решение действительно существовало, то существовало бы меньшее решение (X2, Y2, Z2). Рассматривая это новое решение, Ферма смог показать, что если бы оно существовало, то существовало бы еще меньшее решение (X3, Y3, Z3) и т.д. Эйлер попытался воспользоваться методом бесконечного спуска в качестве исходного пункта при построении общего доказательства для всех других степеней в уравнении Ферма. Он хотел получить доказательство для всех вплоть до бесконечности, но прежде всего он хотел «опуститься на одну ступень» и получить доказательство при =3. В письме к прусскому математику Христиану Гольдбаху в августе 1753 года Эйлер сообщил, что ему удалось приспособить метод бесконечного спуска и успешно доказать Великую теорему Ферма для случая =3.

Решите уравнение в целых числах: Решение. 1 4 - 2 - 8z13 = 0 2х3 – у3 – 4z13 =0. у3= 2(х3 – 2 z13) у3 – чётное , у ⫶ 2, у = 2 у1. 2х3 – 8у13 – 4 z13 = 0 х3 – 4у13 – 2 z13 = 0. х3- чётное число, х ⫶ 2, х = 2 х1
Слайд 23

Решите уравнение в целых числах:

Решение. 1 4 - 2 - 8z13 = 0 2х3 – у3 – 4z13 =0

у3= 2(х3 – 2 z13) у3 – чётное , у ⫶ 2, у = 2 у1

2х3 – 8у13 – 4 z13 = 0 х3 – 4у13 – 2 z13 = 0

х3- чётное число, х ⫶ 2, х = 2 х1

Значит числа х1, у1 и z1 – тоже делятся на 2. Сколько бы раз мы не делили на 2,получаем числа, которые снова делятся на 2. Таким свойством обладает только 0. Ответ: (0;0;0).
Слайд 24

Значит числа х1, у1 и z1 – тоже делятся на 2. Сколько бы раз мы не делили на 2,получаем числа, которые снова делятся на 2. Таким свойством обладает только 0. Ответ: (0;0;0).

Задание для самостоятельной работы. Доказать, что уравнение x 3 + 2y 3 + 4z 3 - 6xyz = 0 в целых числах не имеет решений, не равных нулю одновременно.
Слайд 25

Задание для самостоятельной работы.

Доказать, что уравнение x 3 + 2y 3 + 4z 3 - 6xyz = 0 в целых числах не имеет решений, не равных нулю одновременно.

Другие методы решения диофантовых уравнений. Задача: Доказать, что уравнение x 3 + y 3 + z 3 = 2 имеет бесконечно много решений в целых числах. Решение: Положим x = a + b, y = a - b. Тогда x 3 + y 3 = 2a 3 + 6ab 2. С учетом последнего равенства исходное уравнение принимает вид 2a 3 + 6ab 2 + z 3 = 2
Слайд 26

Другие методы решения диофантовых уравнений

Задача: Доказать, что уравнение x 3 + y 3 + z 3 = 2 имеет бесконечно много решений в целых числах. Решение: Положим x = a + b, y = a - b. Тогда x 3 + y 3 = 2a 3 + 6ab 2. С учетом последнего равенства исходное уравнение принимает вид 2a 3 + 6ab 2 + z 3 = 2. Положив a = 1, получим z 3 = -6b 2. Положим теперь b = 6t 3. Отсюда z = -6t 2, x = 1 + 6t 3, y = 1 - 6t 3. Таким образом, получено бесконечное множество решений исходного уравнения, соответствующих целочисленным значениям параметра t

Домашнее задание. № 1 Решите в целых числах уравнение: а)8х + 14у = 32; б)6х – 15у = 27; в)19х – 5у = 119 № 2. Найдите общий вид целых неотрицательных чисел, дающих при делении на 7 остаток 3, а при делении на 11 остаток 4. № 3. Разделите 200 на два слагаемых так, чтобы при делении одного на 6, а др
Слайд 27

Домашнее задание.

№ 1 Решите в целых числах уравнение: а)8х + 14у = 32; б)6х – 15у = 27; в)19х – 5у = 119 № 2. Найдите общий вид целых неотрицательных чисел, дающих при делении на 7 остаток 3, а при делении на 11 остаток 4. № 3. Разделите 200 на два слагаемых так, чтобы при делении одного на 6, а другого на 11 получились соответственно остатки 5 и 4.

За что ты можешь себя ПОХВАЛИТЬ? Что тебе УДАЛОСЬ на уроке? Над чем еще нужно ПОРАБОТАТЬ? Зачем нам нужен был этот урок? Итоги урока
Слайд 28

За что ты можешь себя ПОХВАЛИТЬ? Что тебе УДАЛОСЬ на уроке? Над чем еще нужно ПОРАБОТАТЬ? Зачем нам нужен был этот урок?

Итоги урока

Удачи! Урок окончен!
Слайд 29

Удачи! Урок окончен!

Литература Пичурин Л.Ф. За страницами учебника алгебры. Книга для учащихся 7-9кл. общелюразоват. учреждений.- М.: Просвещение, 1999.-237 с. Ткачева М.В. Домашняя математика. Книга для учащихся 7 кл. общеобразоват. учреждений. – М. : Просвещение, 1994.- 190с. http://garshin.ru/evolution/mathematics/m
Слайд 30

Литература Пичурин Л.Ф. За страницами учебника алгебры. Книга для учащихся 7-9кл. общелюразоват. учреждений.- М.: Просвещение, 1999.-237 с. Ткачева М.В. Домашняя математика. Книга для учащихся 7 кл. общеобразоват. учреждений. – М. : Просвещение, 1994.- 190с. http://garshin.ru/evolution/mathematics/math-history.html http://www.math.md/school/krujok/diofantr/diofantr.html http://virlib.eunnet.net/books/numbers/text/5.html http://maths3.narod.ru/algteo4.html

Список похожих презентаций

Диофантовы уравнения

Диофантовы уравнения

Диофантовы уравнения Глобально не изучаются в школьной программе, а присутствуют на экзамене! Проблема подтолкнувшая на создание работы:. обусловлена ...
Диофантовы уравнения

Диофантовы уравнения

СКОЛЬКО РЕШЕНИЙ ИМЕЕТ ДАННОЕ УРАВНЕНИЕ? (2х+у)(5х+3у)=7. 3) Не имеет решений. 4) Бесконечно много решений. Следующее задание. (3х+7у)(х-у)=13 1) 2 ...
Диофантовы уравнения

Диофантовы уравнения

Цели учебно – исследовательской работы: изучить способы решения диофантовых уравнений; повысить уровень математической культуры, прививая навыки самостоятельной ...
Решение уравнений в целых числах. Диофантовы уравнения

Решение уравнений в целых числах. Диофантовы уравнения

Диофантовы уравнения. Алгебраические уравнения с целыми коэффициентами, решаемые во множестве целых чисел, вошли в историю математики как диофантовы. ...
Определение квадратного уравнения. Неполные квадратные уравнения

Определение квадратного уравнения. Неполные квадратные уравнения

ax+b=0. 1) (2х-3)2-2х(4+2х)=49, 2) y2+80=81, 3) -z+4=47, 4) 2x2+3х+1=0, 5) 4k/3+4=k/2+1, 6) 12s-4s2=0, 7) 10+p2-4p=2(5-3p), 8) 6(t-1)=9,4-1,7t, 9) ...
Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения

Уравнение первого порядка. Функциональное уравнение F(x,y,y) = 0 или y= f(x,y), связывающее между собой независимую переменную, искомую функцию ...
Алгебраические уравнения произвольных степеней

Алгебраические уравнения произвольных степеней

Алгебраические уравнения произвольных степеней. 1. Введение. Всякий школьник, прежде всего, умеет решать уравнение первой степени: если дано уравнение ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Вы хотите научиться решать квадратные уравнения? ДА НЕТ. . . Содержание. Определение квадратного уравнения Дискриминант квадратного уравнения Формула ...
Тригонометрические уравнения

Тригонометрические уравнения

Тригонометрические уравнения. Уравнение представляет собой наиболее серьёзную и важную вещь в математике. О.Лодж. «Дороги не те знания, которые откладываются ...
Простейшие тригонометрические уравнения

Простейшие тригонометрические уравнения

История развития тригонометрии. . . . . . . . . . . Устная работа. Ответьте на вопросы:. Может ли косинус быть равным: 0,75; 5/3; -0,35; π/3; 3/π; ...
Показательные уравнения и способы их решения

Показательные уравнения и способы их решения

Определение: Показательные уравнения – уравнения, в которых переменная входит только в показатели степеней при постоянных основаниях. Например,. Основные ...
Показательные уравнения

Показательные уравнения

Показательные. Цели урока: 1. ввести понятие показательных уравнений; 2. формировать умение решать показательные уравнения основными методами: функционально-графическим, ...
Графическое решение линейного уравнения с двумя переменными

Графическое решение линейного уравнения с двумя переменными

Цель урока:. проверить прочность знаний, умений и навыков, учащихся по данной теме, обеспечить закрепление и обобщение изученного материала; развивать ...
Графики линейного уравнения с двумя переменными

Графики линейного уравнения с двумя переменными

Цель урока:. ввести понятие графика уравнения с двумя переменными; повторить построение графика линейной функции по двум точкам; закрепить навыки ...
График линейного уравнения с двумя переменными

График линейного уравнения с двумя переменными

Закончите предложение:. Линейным уравнением с двумя переменными называется уравнение вида. ах+by=с, где х и y – переменные, а, b и с – некоторые числа. ...
Вывод канонического уравнения эллипса

Вывод канонического уравнения эллипса

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Вывод канонического уравнения эллипса» Задачи: Рассмотреть свойства эллипса Исследовать ...
Арксинус. Решение уравнения sin t = a

Арксинус. Решение уравнения sin t = a

Цели. Изучить определение арксинуса числа. Изучить формулы решения простейшего тригонометрического уравнения sin t = a. Повторим. Что называется синусом ...
Арккосинус и решение уравнения cos x = a

Арккосинус и решение уравнения cos x = a

Цели урока. ввести понятие arccos x; вывести формулу решения уравнения cos x=a, ; рассмотреть уравнения на применение этой формулы; рассмотреть простейшие ...
Показательные уравнения

Показательные уравнения

Математический диктант. Запишите функции. 1. Постройте схематично графики. 2. Выпишите убывающие функции 3. Для каждой из функций запишите множество ...
Дифференциальные уравнения второго порядка

Дифференциальные уравнения второго порядка

y’’ = f(x,y,y’). y = (x,C’,C’’), Общее решение. где С’,С’’ - независимые постоянные,. Тогда начальные условия: у = у0 y/(х = х0) = y/0 tg 0 = y/0. ...

Конспекты

Целые уравнения

Целые уравнения

Открытое занятие элективного курса. . по алгебре в 9 классе. ( Продолжительность 1 ч 30 мин). Разработала. учитель математики МАОУ СОШ №10. ...
Неравенства и уравнения, содержащие степень

Неравенства и уравнения, содержащие степень

Неравенства и уравнения, содержащие степень. Цель:. провести систематизацию и обобщение знаний по вопросам решения уравнений и неравенств; рассмотреть ...
Тригонометрические уравнения

Тригонометрические уравнения

Захарова Людмила ВладимировнаМБОУ «Средняя общеобразовательная школа № 59» г. Барнаулаучитель математики. zlv-13@mail.ru. ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Урок по теме. . «Формула корней квадратного уравнения. ». Организационная информация. Тема урока:. . «Формула корней квадратного уравнения. ...
Рациональные уравнения как математические модели реальных ситуаций

Рациональные уравнения как математические модели реальных ситуаций

ПЛАН-КОНСПЕКТ УРОКА Рациональные уравнения как математические модели реальных ситуаций. . ФИО (полностью). . Науменкова Олеся Анатольевна. ...
Системы линейных уравнения с двумя переменными

Системы линейных уравнения с двумя переменными

Учитель математики ГБОУ СОШ № 80. . с углубленным изучением английского языка. . Головкина. Светлана Анатольевна. Разработка урока по алгебре ...
Дробные рациональные уравнения

Дробные рациональные уравнения

Урок по алгебре в 9 классе. Тема урока:. Дробные рациональные уравнения. Цели урока:. 1) Организовать деятельность учащихся, способствующую формированию ...
Показательные уравнения и неравенства

Показательные уравнения и неравенства

Технологическая карта урока по математике в 10 классе. по теме: «Показательные уравнения и неравенства». Учитель Бондарь Ирина Рувиновна. Предмет. ...
Дробно-рациональные уравнения

Дробно-рациональные уравнения

РЕШЕНИЕ ДРОБНО-РАЦИОНАЛЬНЫХ УРАВНЕНИЙ. Цели урока:. Обучающая:. формирование понятия дробно- рационального уравнения;. . рассмотреть различные ...
Дробные рациональные уравнения

Дробные рациональные уравнения

Тема урока:. «Дробные рациональные уравнения». Класс 9. Тип урока:. комбинированный. Цели: 1. . Образовательные:. Дать определение «дробно-рациональные ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 апреля 2019
Категория:Математика
Содержит:30 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации