- Показательные уравнения и неравенства

Конспект урока «Показательные уравнения и неравенства» по математике для 10 класса

Технологическая карта урока по математике в 10 классе


по теме: «Показательные уравнения и неравенства». Учитель Бондарь Ирина Рувиновна.




Предмет


математика


Класс


10


Тема урока



Показательные уравнения и неравенства.

Педагогические цели урока



Образовательная цель: закрепление и при необходимости коррекция и тренинг алгоритмов и способов решения показательных уравнений и неравенств.


Деятельностная цель: формирование у учащихся способностей к рефлексии коррекционно-контрольного типа и реализации коррекционной нормы (фиксирование собственных затруднений, выявление их причин, построение и реализация проекта выхода из затруднений).

Воспитательная цель: способствовать формированию ответственного отношения к учению, готовности и мобилизации усилий на выполнение заданий; воспитывать культуру учебного труда, навыков самоконтроля и экономного расходования времени; развивать коммуникативные навыки.


Задачи урока



Образовательные

Развивающие

Воспитательные

Здоровьесберегающие

Закрепление навыков решения показательных уравнений и неравенств; ликвидировать пробелы в знаниях по этой теме.

Развивать речь учащихся, их память и способность логически мыслить, анализировать полученные знания; развивать внимание и целеустремленность; укреплять интерес к математике.

Формировать умение работать в коллективе, осуществлять самоконтроль, прилагать волевые усилия в преодолении трудностей.

Профилактика переутомления с помощью смены видов умственной деятельности и подвижности на уроке;


Тип урока


Урок рефлексии.





Планируемые образовательные результаты (с учетом разделов «Ученик научится», «Ученик получит возможность научиться»)




Предметные


Метапредметные

Личностные

Учащиеся научатся: решать показательные уравнения и неравенства базового уровня.

Учащиеся получат возможность научиться: решать показательные уравнения и неравенства повышенного уровня.



Регулятивные: учащиеся научатся контролировать и корректировать свои действия при решении заданий базового уровня; прилагать волевые усилия в преодолении трудностей;

Учащиеся получат возможность научиться планировать деятельность, направленную на решение заданий повышенной трудности.

Познавательные: учащиеся научатся применять на практике знания алгоритмов решения показательных уравнений и неравенств;

Учащиеся получат возможность научиться осуществлять творческую деятельность при решении заданий повышенного уровня сложности; выбирать наиболее эффективные способы решения.

Коммуникативные: учащиеся научатся осуществлять взаимоконтроль, самоконтроль, прилагать волевые усилия в преодолении трудностей;

Учащиеся получат возможность научиться выступать перед аудиторией, доказывать свою точку зрения на решение вопросов и толерантно относиться к мнению других учеников.

Ученик разовьет внимание, аккуратность, память, трудолюбие.

Ученик получит возможность развития целеустремленности, интереса к учению, самовоспитанию.

Формы проведения урока

Фронтальный опрос, индивидуальная работа в системе голосования « Mimio Studio» , работа в группах (по три человека), самостоятельная работа дифференцированного характера.

Педагогические технологии

Дифференцированное обучение.

Оборудование и материалы

Доска, компьютер, проектор, экран, две самостоятельные работы в блокноте « Mimio Studio», карточки с заданиями для учащихся, работающих в группах, тексты дифференцированной самостоятельной работы, карточки с таблицей для рефлексии.

Структура урока.


  1. Этап мотивации (самоопределения) к коррекционной деятельности.

Цель: выработка на личностно значимом уровне внутренней готовности к коррекционной учебной деятельности.

Продолжительность: 3 минуты.

Деятельность

учителя

Задания для учащихся, выполнение которых приведёт к достижению запланированных результатов

Деятельность

учеников

Планируемые результаты


Предметные

УУД

Организует фронтальную беседу о теме, целях и плане урока.

Показывает слайды с темой и целями урока

(слайды смотреть в приложении).

Обдумать важность этого урока для дальнейшего успешного обучения и подготовки к контрольной работе и к ЕГЭ.

Показ слайдов (смотреть в приложении).

Записывают тему урока в тетрадь.

Объясняют важность научиться решать показательные уравнения и неравенства для дальнейшего успешного обучения.

Сформировать осознанный интерес к теме урока.

Учащиеся получат возможность научиться целостно представить изучение темы.

Научатся обдумывать цель; осознать практическую и личностную значимость учебного материала.

Учащиеся получат возможность научиться высказывать мнение.

  1. Этап актуализации и пробного учебного действия.

Цель: подготовка мышления учащихся и осознание ими потребности к выявлению причин затруднений при решении заданий базового уровня по теме урока.

Продолжительность: 7минут.

Деятельность

учителя

Задания для учащихся, выполнение которых приведёт к достижению запланированных результатов

Деятельность

учеников

Предметные

УУД

Организует самостоятельную работу с помощью ИКТ системы голосования « Mimio Studio»; организует самопроверку учащимися своих работ по ответам с фиксацией полученных результатов (без исправления ошибок).

Выполняют самостоятельную

работу№1.

(слайды смотреть в приложении).

1. =0,09

А. – 0,5; В. – 1,5; С. 1,5

2.

А. х; В.; С. ; Д.

3.

А. 3; В. 4; С. -4

4.

А.; В. ;

С. .

Решают самостоятельную работу №1 в виде теста в программе « Mimio Studio». После каждого задания показывается ответ; учащиеся сверяют результаты своей работы.

Научатся контролировать степень усвоения знаний, умений и навыков решения базовых показательных уравнений и неравенств.

Учащиеся получат возможность научиться сформировать навыки успешно, точно, безошибочно и быстро выполнять решение заданий базового уровня.

Научатся осуществлять самоконтроль, прилагать волевые усилия в преодолении трудностей;


Учащиеся получат возможность научиться активизировать соответствующие мыслительные операции и познавательные процессы(внимание, память и т.д.)

  1. Этап локализации индивидуальных затруднений, построения проекта коррекции выявленных затруднений, обобщения затруднений во внешней речи.

Цель: осознание учащимися места и причины собственных затруднений в выполнении изученных ранее способов решения базовых показательных уравнений и неравенств; постановка цели и способов коррекционной деятельности; закрепление способов решения заданий, вызвавших затруднения.

Продолжительность: 10 минут.

Деятельность

учителя

Задания для учащихся, выполнение которых приведёт к достижению запланированных результатов

Деятельность

учеников

Предметные


УУД


Организует фронтальный опрос учеников для выявления затруднений и объяснения способов решения заданий, которые вызвали трудности, самопроверку учащихся по эталону.

Учащиеся, которые выполнили работу без ошибок, получают карточки с дифференцирован-

ными заданиями высокого и повышенного уровней.

Выявить и озвучить затруднения и объяснить способы решения заданий, которые вызвали трудности; исправить свои ошибки с помощью эталона (эталон смотрите в приложении).

Задания для учащихся, которые не допустили ошибок, творческого характера более высокого уровня (на карточках), ученики выбирают по одному заданию своего варианта.

(Карточки смотреть в приложении).

Вариант.

Базовый уровень

Высокий уровень

Повышенный уровень

1 вариант

Ответ:

Ответ: -1

Ответ: (0;+)


2 вариант

Ответ:

Ответ: -2

Ответ: (1;2)


Анализируют свои решения и определяют место ошибок; выявляют и фиксируют способы действий (алгоритмы, формулы, правила), в которых допущены ошибки.

Ученики задают вопросы по решению заданий из работы №1; другие учащиеся объясняют способы решения этих заданий.

Исправляют свои ошибки с помощью эталона.

Остальные ученики решают дифференцированные задания по карточкам.

Научатся анализировать свои ошибки в решении заданий, формулировать, какие понятия и способы решения им надо научиться применять.

Учащиеся, не допустившие ошибок, получат возможность научиться правильно выражать свои мысли в устной форме, развить творческие способности.

Научатся анализировать и сопоставлять результаты своей деятельности; ставить перед собой коррекционные цели;

Учащиеся получат возможность научиться выступать перед аудиторий; преодолевать трудности.

  1. Этап самостоятельной работы с самопроверкой.

Цель: индивидуальная рефлексия достижения цели и создание (по возможности) ситуации успеха; закрепление знания способов решения показательных уравнений и неравенств.

Продолжительность: 10 минут.

Деятельность

учителя

Задания для учащихся, выполнение которых приведёт к достижению запланированных результатов

Деятельность

учеников


Предметные


УУД


Организация работы групп (по три человека) по решению заданий повышенного уровня сложности.

Собирает самостоятельные работы творческого уровня.

Организует самостоятельную работу с помощью ИКТ системы голосования « Mimio Studio»; организует самопроверку учащимися своих работ по эталону.

Учащиеся, набравшие 1, 2, 3 балла по самостоятельной работе №1, выполняют самостоятельную

работу№2.

(слайды смотреть в приложении).

Учащиеся, набравшие 4 балла по самостоятельной работе №1, работают в группах по три человека, решая задания творческого характера.

Работа №2 (базовая).

1.

А. ; В. ; С.

2. = 65

А. 3; В. 4; С. 2

3.

А. ; В. ; С. ;

Д.

4.

А. ; В. ; С. ; Д.

Задания группам (по одному заданию каждой группе):

1.

2.

3. Найти все значения параметра а, при которых уравнение

имеет единственный корень.

Учащиеся, набравшие 1, 2, 3 балла по самостоятельной работе №1, решают самостоятельную работу №2 в виде теста в программе

« Mimio Studio». После каждого задания показывается ответ; учащиеся сверяют результаты своей работы.

Остальные ученики работают в творческих группах.


Научатся решать задания базового уровня по данной теме; контролировать степень усвоения знаний, умений и навыков решения;

Учащиеся получат возможность научиться решать задания повышенного уровня по данной теме.

Научатся осуществлять самоконтроль, прилагать волевые усилия в преодолении трудностей; активизировать память, мышление, внимание.

Учащиеся получат возможность научиться мыслить творчески, взаимодействовать в группе, учитывать мнение одноклассников, быть толерантным.


  1. Этап включения в систему знаний.

Цель: закрепление изученных способов решения и применение знаний в новых ситуациях.

Продолжительность: 10 минут.

Деятельность

учителя

Задания для учащихся, выполнение которых приведёт к достижению запланированных результатов

Деятельность

учеников

Планируемые результаты


Предметные

УУД

Проверяет результаты работы учеников в группах. Вызывает по каждому заданию одного ученика для отчета работы группы.

Объяснить у доски решение задания, которое разбирала группа.

Три ученика объясняют решение заданий, которые выполняла их группа, остальные могут задавать вопросы.

Ученики повторяют и закрепляют изученные способы решения заданий, знакомятся с применением их в новых ситуациях.

Учащиеся получат возможность научиться решать задания повышенного уровня сложности; развить интерес к изучению математики.

Научатся строить аналогии, активизировать внимание и память, развивать в себе чувство долга, сознательную дисциплину и культуру поведения.

Учащиеся получат возможность научиться обосновывать свою позицию, развивать речь и умение выступать перед аудиторией, умение объяснять.

  1. Этап рефлексии деятельности на уроке.

Цель: осознание учащимися метода преодоления затруднений и самооценка ими результатов своей деятельности на уроке; подведение итогов урока.

Продолжительность: 5 минут.

Деятельность

учителя



Задания для учащихся, выполнение которых приведёт к достижению запланированных результатов

Деятельность

учеников

Планируемые результаты

Предметные

УУД


Предлагает учащимся проанализировать результаты работы на уроке; заполнить таблицу рефлексии; выбрать домашнее задание в соответствии с результатами деятельности на уроке (домашнее задание дифференцированное)

Выставление отметок.

Показ итогового слайда.

Проанализируйте результаты своей деятельности в соответствии с поставленной целью урока.

Заполните таблицу рефлексии.

Рефлексия.

С.р.

отметка

1


2


группа


итоговая


?


В соответствии с результатами работы надо выбрать домашнее задание:

Базовый уровень:№231(1,2),232(2),216(6).

Высокий уровень: №226(1,4),225(3),238(1).

Повышенный уровень: №227(2),226(2),225(2),239(3).

ПО желанию можно выполнить дома задания из самостоятельной работы творческого уровня (на карточках была на уроке).

Анализируют свои успехи и деятельность на уроке.

Заполняют таблицу рефлексии.

Выбирают и записывают домашнее задание; по желанию берут карточку с работой домой.

Смотрят итоговый слайд

Научатся анализировать степень усвоения знаний, умений и навыков; в соответствии с результатами этого анализа научатся планировать свою учебную работу дома;

Учащиеся получат возможность научится анализировать, прогнозировать и обобщать выводы о результатах своей работы; развить культуру самоуправления учением.

Научатся формировать навыки самоконтроля и анализа результатов работы; сознательно относиться к выбору домашнего задания; развивать культуру учебного труда.

Учащиеся получат возможность развить способность мыслить критически; осуществлять самооценку и самокоррекцию учебной деятельности.


Приложение.

Самостоятельная работа №1.

Самостоятельная работа №2.


Рефлексия.

С.р.

отметка

1


2


группа


итоговая


?



Самостоятельная работа повышенного уровня.

Вариант.

Базовый уровень

Высокий уровень

Повышенный уровень

1 вариант

Ответ:

Ответ: -1

Ответ: (0;+)


2 вариант

Ответ:

Ответ: -2

Ответ: (1;2)

Задания для групп.

1.

2. имеет единственный корень.

Слайды.







Разбор ошибок по эталону.



1.

х=с

2.


3.


4.

Замена:

+b*t + c















Список литературы.


  1. Учебник «Алгебра и начала математического анализа» для 10-11 классов, Москва, «Просвещение», 2013г., авторы: Ш.А.Алимов, Ю.М.Колягин и др.

  2. Учебник «Алгебра и начала математического анализа» для 10класса, Москва, «Просвещение», 2009г., авторы: С.М.Никольский, М.К.Потапов и др.

  3. «Алгебра и начала математического анализа» для 10класса, дидактические материалы, Москва, «Просвещение», 2010г., авторы: М.И.Шабунин, М.В.Ткачева, Н.Е.Федорова, Р.Г.Газарян.

  4. Учебник «Алгебра и начала математического анализа» для 10 класса, Москва, «Просвещение», 2010г., авторы: Ю.М.Колягин, М.В.Ткачева и др.

  5. Учебно-методическое пособие «Алгебра и начала анализа» для 10-11 классов, Москва, «Дрофа», 2002г., автор П.И.Алтынов.

  6. Тесты по алгебре и началам анализа для 10-11 классов, Санкт-Петербург, СМИО ПРЕСС, 2001г.

  7. ФГОС основного общего образования, утвержден приказом Министерства образования и науки Российской Федерации от 17 декабря 2010г. №1897.

  8. Стандарты второго поколения. Фундаментальное ядро содержания общего образования. Под редакцией В.В.Козлова, А.М.Кондакова, Москва, «Просвещение», 2009г.

  9. Стандарты второго поколения. Примерная основная образовательная программа. Москва, «Просвещение», 2011г. Программа подготовлена институтом стратегических исследований в образовании РАО. Научные руководители — член-корреспондент РАО А. М. Кондаков, академик РАО Л. П. Кезина. Составитель — Е. С. Савинов.


Интернет – ресурсы:


  1. Педсовет, математика http://pedsovet.su/load/135

  2. Учительский портал. Математика http://www.uchportal.ru/load/28

  3. Решу ЕГЭ






Здесь представлен конспект к уроку на тему «Показательные уравнения и неравенства», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Математика (10 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Показательные уравнения и неравенства

Показательные уравнения и неравенства

. КГУ "Средняя школа №11 отдела образования акимата г. Тараз". Открытый урок. «Показательные уравнения и неравенства». . Класс. : ...
Показательные функции, уравнения, неравенства

Показательные функции, уравнения, неравенства

Обобщающий урок. по теме:. Учитель математики филиала. . БОУ ХМАО - Югры В(с)ОШ. при ИР 99/15 г.Нижневатовска. ...
Логарифмические уравнения и неравенства

Логарифмические уравнения и неравенства

Тема. : «Логарифмические уравнения и неравенства». Цели: Проверить теоретические и практические знания по теме; отработать навыки решения логарифмических ...
Неравенства и уравнения, содержащие степень

Неравенства и уравнения, содержащие степень

Неравенства и уравнения, содержащие степень. Цель:. провести систематизацию и обобщение знаний по вопросам решения уравнений и неравенств; рассмотреть ...
Показательные уравнения

Показательные уравнения

Учитель. : Моисеева Е.В. . . Предмет:. алгебра. Класс - 10. Тема урока. . Показательные уравнения. Единица содержания. . Основной способ ...
Показательные уравнения

Показательные уравнения

ТЕМА «Показательные уравнения». Цели:. 1.Познакомиться с разными видами показательных уравнений, научиться различать разные виды показательных уравнений, ...
Показательные уравнения

Показательные уравнения

Тема урока: «Показательные уравнения», 11 класс. Цели:. Образовательные: актуализация опорных знаний при решение показательных уравнений, обобщение ...
Показательные уравнения и их системы

Показательные уравнения и их системы

Тема: «Показательные уравнения и их системы». Цели:. Образовательная:. рассмотреть способы решения показательных неравенств и способствовать выработке ...
Выражения, равенства, неравенства, уравнения

Выражения, равенства, неравенства, уравнения

. . Кащаева Валентина Яковлевна. . ГУОШ № 117 Ауэзовского района, г. Алматы. Учитель начальных классов. ...
Решение задач с помощью составления неравенства

Решение задач с помощью составления неравенства

. Конспект урока. математики по теме. «Решение задач с помощью составления неравенства». урок проводится по технологии. «Обучение в ...
Решаем уравнения с увеличением

Решаем уравнения с увеличением

Класс: 1. . Тема: Решаем уравнения с увеличением. . . Цель:. развивать вычислительные навыки. Знать. геометрические фигуры, ряд натуральных ...
Рациональные уравнения

Рациональные уравнения

"Рациональные уравнения". Цели урока:. организовать деятельность учащихся по формированию алгоритма решения рациональных уравнений различных ...
Графическое моделирование отношений равенства и неравенства

Графическое моделирование отношений равенства и неравенства

Конспект урока по математике по системе Эльконина – Давыдова 1 класс. (адаптационный период). Автор – составитель Хижняк И.Н. учитель начальных ...
Иррациональные уравнения

Иррациональные уравнения

Конспект урока в 11 классе по теме «Иррациональные уравнения». Три пути ведут к знанию:. путь размышления – это путь самый благородный,. . ...
Целые уравнения

Целые уравнения

Открытое занятие элективного курса. . по алгебре в 9 классе. ( Продолжительность 1 ч 30 мин). Разработала. учитель математики МАОУ СОШ №10. ...
Дробные рациональные уравнения

Дробные рациональные уравнения

Тема урока:. «Дробные рациональные уравнения». Класс 9. Тип урока:. комбинированный. Цели: 1. . Образовательные:. Дать определение «дробно-рациональные ...
Квадратные уравнения

Квадратные уравнения

. МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №2 СТ. АРХОНСКАЯ. . Урок алгебры в 8 классе ...
Квадратные уравнения

Квадратные уравнения

Урок тренинг «Квадратные уравнения». . Цели урока:. Образовательные - систематизировать знания, выработать умение выбирать рациональный способ ...
квадратные уравнения

квадратные уравнения

Государственное бюджетное общеобразовательное учреждение. . Самарской области основная общеобразовательная школа № 21. . города Новокуйбышевска ...
Квадратные неравенства

Квадратные неравенства

Алгебра .9 класс. Тема: Квадратные неравенства. Цель: 1.Формирование умения решать квадратные неравенства. Задачи:. . 1. Обучать решению ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:16 июля 2017
Категория:Математика
Классы:
Поделись с друзьями:
Скачать конспект