- Исследование тригонометрических функций

Презентация "Исследование тригонометрических функций" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19

Презентацию на тему "Исследование тригонометрических функций" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайд(ов).

Слайды презентации

Исследование тригонометрических функций.
Слайд 1

Исследование тригонометрических функций.

Содержание. Область определения функции Область значения функции Периодичность Промежутки знакопостоянства Четность и нечетность функций Возрастание и убывание функций План исследования функции Экстремумы
Слайд 2

Содержание

Область определения функции Область значения функции Периодичность Промежутки знакопостоянства Четность и нечетность функций Возрастание и убывание функций План исследования функции Экстремумы

Областью определения функции f(x) называют множество всех значений, которые может принимать независимая переменная x. f(x)=2sin x+1 D(f): (- ;+ ) f(x)=tg x D(f): x
Слайд 3

Областью определения функции f(x) называют множество всех значений, которые может принимать независимая переменная x.

f(x)=2sin x+1 D(f): (- ;+ ) f(x)=tg x D(f): x

Задание. Найдите область определения функции: ƒ(x)=1+ ctg x ƒ(x)=1+ sin² x ƒ(x)=2cos(x-¶/3)
Слайд 4

Задание

Найдите область определения функции: ƒ(x)=1+ ctg x ƒ(x)=1+ sin² x ƒ(x)=2cos(x-¶/3)

Множество, состоящее из всех чисел f(x), таких, что х принадлежит области определения функции f, называют областью значений функции F. f(x)=1,5cosx+ E(f)=[-1,5;1,5] f(x)=tg x E(f)=(- ;+ )
Слайд 5

Множество, состоящее из всех чисел f(x), таких, что х принадлежит области определения функции f, называют областью значений функции F.

f(x)=1,5cosx+ E(f)=[-1,5;1,5] f(x)=tg x E(f)=(- ;+ )

Найдите область значений функции: ƒ(x)=3 + 0,5 sin (x + ¶/4) ƒ(x)=1,5 – 0,5 cos² x ƒ(x)=1 + 2 sin x
Слайд 6

Найдите область значений функции: ƒ(x)=3 + 0,5 sin (x + ¶/4) ƒ(x)=1,5 – 0,5 cos² x ƒ(x)=1 + 2 sin x

Функцию f называют периодической с периодом Т 0, если для любого х из области определения f(х+Т)=f(x)=f(x+T). Каким образом по графику определить период? Если Т-период функции, то при любом целом значении k число kT так же является ее периодом.
Слайд 7

Функцию f называют периодической с периодом Т 0, если для любого х из области определения f(х+Т)=f(x)=f(x+T).

Каким образом по графику определить период? Если Т-период функции, то при любом целом значении k число kT так же является ее периодом.

Найдите наименьший положительный период каждой из функций: y=1/2 sin x/4 y=4 cos 2x y=3 tg 1,5x
Слайд 8

Найдите наименьший положительный период каждой из функций: y=1/2 sin x/4 y=4 cos 2x y=3 tg 1,5x

При каких значениях х функция принимает положительные (отрицательные) значения? f(x). f(x)>0, если х, принадлежит промежутку (-П/2+2Пk;П/2+2Пk)
Слайд 9

При каких значениях х функция принимает положительные (отрицательные) значения?

f(x)

f(x)>0, если х, принадлежит промежутку (-П/2+2Пk;П/2+2Пk)

Найдите промежутки знакопостоянcтва: y=-sin 3x y=cos x/2 y=tg 2x/3
Слайд 10

Найдите промежутки знакопостоянcтва: y=-sin 3x y=cos x/2 y=tg 2x/3

График четной функции симметричен относительно оси ординат. (f(-x)=f(x)). На рисунке изображен график четной функции. Достройте график на промежутке (-П/2;0). График какой функции получился? f(x)=2sin|x|
Слайд 11

График четной функции симметричен относительно оси ординат. (f(-x)=f(x))

На рисунке изображен график четной функции. Достройте график на промежутке (-П/2;0).

График какой функции получился? f(x)=2sin|x|

График нечетной функции симметричен относительно начала координат. (f(-x)=-f(x)). На рисунке Изображен график нечетной функции. Достройте график на промежутке (-П/2;0).
Слайд 12

График нечетной функции симметричен относительно начала координат. (f(-x)=-f(x))

На рисунке Изображен график нечетной функции. Достройте график на промежутке (-П/2;0).

Функция f возрастает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х1>х2, выполнено неравенство f(x1)>f(x2). Определите промежутки возрастания функции. [Пk;3П/2k] f(x)=-cosx
Слайд 13

Функция f возрастает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х1>х2, выполнено неравенство f(x1)>f(x2).

Определите промежутки возрастания функции.

[Пk;3П/2k] f(x)=-cosx

Функция f убывает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х1>х2, выполнено неравенство f(x1). Определите промежутки убывания функции. [-П+2Пk;2Пk] f(x)=-cosx
Слайд 14

Функция f убывает на множестве Р, если для любых х1 и х2 из множества Р, таких, что х1>х2, выполнено неравенство f(x1)

Определите промежутки убывания функции.

[-П+2Пk;2Пk] f(x)=-cosx

Найдите промежутки возрастания и убывания функции: y=4 cos 3x y= 2 tg x/2 y= 0,2 sin 4x
Слайд 15

Найдите промежутки возрастания и убывания функции: y=4 cos 3x y= 2 tg x/2 y= 0,2 sin 4x

Экстремумы функции. max f(x): f(П/4+Пk)=1. min f(x) определи самостоятельно
Слайд 16

Экстремумы функции

max f(x): f(П/4+Пk)=1

min f(x) определи самостоятельно

Найдите экстремумы функции: y=cos (x + ¶/4) y=sin (x + ¶/6) y=1 - sin (x - ¶/3)
Слайд 17

Найдите экстремумы функции: y=cos (x + ¶/4) y=sin (x + ¶/6) y=1 - sin (x - ¶/3)

“Чтение” графика. Область определения функции Область значений функции Четность (нечетность) функции Периодичность (наименьший положительный период) функции Точки пересечения графика с осями Промежутки знакопостоянства Промежутки возрастания (убывания) функции Максимумы (минимумы)
Слайд 18

“Чтение” графика

Область определения функции Область значений функции Четность (нечетность) функции Периодичность (наименьший положительный период) функции Точки пересечения графика с осями Промежутки знакопостоянства Промежутки возрастания (убывания) функции Максимумы (минимумы)

Если что-то не усвоил, вернись на нужную страницу. Область определения функции Область значения функции Периодичность Промежутки знакопостоянства Четность и нечетность функций Возрастание и убывание функций Максимумы (минимумы) План исследования функции
Слайд 19

Если что-то не усвоил, вернись на нужную страницу.

Область определения функции Область значения функции Периодичность Промежутки знакопостоянства Четность и нечетность функций Возрастание и убывание функций Максимумы (минимумы) План исследования функции

Список похожих презентаций

Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Цели урока:. Обобщить и систематизировать знания учащихся по теме. Показать актуальность темы в связи с введением ЕГЭ в штатный режим. Показать возможности ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Параллельный перенос на вектор (0; b) вдоль оси ординат: График функции f(x)+b получается параллельным переносом графика f(x) в положительном направлении ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

y = cos(x+2) y=cos2x y=sinx +2 y=-3cosx y=sin1/2x y=sin(x-5) y=tg2x y=2ctgx y=ctg1/3x y=1/3sinx y=4-cosx y=ctgx+1. Сгруппируйте функции по какому-нибудь ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Цель урока:. Повторить свойства тригонометрических функций Изучить графическую программу Advanced Grapher, облегчающую построение графиков Изучить ...
Свойства тригонометрических функций

Свойства тригонометрических функций

I. Свойства функции y=sinx. x 1 0 Масштаб :3 −1 y. 1) Область определения функции – любые числа (x);. 2) Область значений функции – отрезок от ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Оборудование урока: компьютер, проектор, экран. Цели: Обобщить знания и умения. Развить умение наблюдать, сравнить, обобщать. Воспитать познавательную ...
Свойства тригонометрических функций

Свойства тригонометрических функций

Сегодня на уроке я приглашаю вас посетить «Математическое кафе». Каждой паре предлагается сесть за отдельный столик (девушка и парень). Всем посетителям ...
Свойства обратных тригонометрических функций

Свойства обратных тригонометрических функций

Тема элективного занятия: «ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ. РЕШЕНИЕ УРАВНЕНИЙ, СОДЕРЖАЩИХ АРКФУНКЦИИ». ЦЕЛИ УРОКА: 1. Обобщить, систематизировать ...
Нахождение значений тригонометрических функций с помощью таблиц Брадиса

Нахождение значений тригонометрических функций с помощью таблиц Брадиса

Четырёхзначные таблицы В.М. Брадиса. Владимир Модестович Брадис - математик, педагог. Родился 23 декабря 1890 года в семье учителей начальной школы ...
Построение графиков тригонометрических функций

Построение графиков тригонометрических функций

формирование знаний и умений преобразовать графики тригонометрических функций. Цель:. Закрепить применение программы MS Excel для построения графиков ...
Применение свойств тригонометрических функций

Применение свойств тригонометрических функций

Графики тригонометрических функций. График какой функции изображен на рисунке? Y = cos 0.5 x Y = 2cos x Y = 2cos 0.5x Y = 2 sin x. 1.Y = sin0.5x 2. ...
Производные тригонометрических функций

Производные тригонометрических функций

Ввести формулы производных тригонометрических функций рассмотреть методы решения упражнений на применение изученных правил дифференцирования; вырабатывать ...
Графики тригонометрических функций

Графики тригонометрических функций

тригонометрические функции. Графиком функции у = sin x является синусоида. Свойства функции: D(y) =R Периодическая (Т=2p) Нечетная (sin(-x)=-sin x) ...
Исследование графиков функций

Исследование графиков функций

Найдите область определения функции:. Найдите область значения функции:. Найдите координаты точек пересечения с осями координат:. Найдите промежутки ...
Дополнения к значениям тригонометрических функций

Дополнения к значениям тригонометрических функций

Цели и задачи работы:. Нахождение способов вычисления значений тригонометрических функций нестандартных углов; Изучение литературы о тригонометрии ...
Преобразованиеграфиков функций

Преобразованиеграфиков функций

Тип урока: обобщение и систематизации знаний, практикум. Цель урока: научить строить графики функций, формулы которых содержит знак модуля. Задачи: ...
Преобразование графиков функций, содержащих модуль

Преобразование графиков функций, содержащих модуль

y = f(x) + a y = f(x) y = f(x) - a +a -a. Преобразование графиков функций. Т1. Параллельный перенос по оси Оу. y = f(x) график исходной функции. y ...
Функции. Графики функций

Функции. Графики функций

1. Задайте формулой функцию, сопоставляющую каждому числу третью степень этого числа. 2. Функция задана формулой Найдите её значение при х = 2. 3. ...
Свойства функций и их графики

Свойства функций и их графики

Повторение по теме: «Свойства функций и их графики». 1. Что такое функция? 2. Как можно задать функцию? Определение. «Зависимость переменной y от ...
Свойства и графики элементарных функций

Свойства и графики элементарных функций

1. Определение функции. 2. Линейная функция: возрастающая; убывающая; частные случаи. 3. Квадратичная функция. 4. Степенная функция: с четным натуральным ...

Конспекты

Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Конспект урока по алгебре в 10 классе. Васильева Екатерина Сергеевна. ,. . учитель математики. ОГБОУ «Смоленская специальная (коррекционная). ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Тема урока : "Преобразование графиков тригонометрических функций ". . . Цели: . . -. образовательные:. обобщить и систематизировать знания ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

. . Воробьева Ирина Юрьевна. учитель математики. 1 категории. ГУ «Экономический лицей». г. Семей. Методическая разработка урока. ...
Свойства тригонометрических функций

Свойства тригонометрических функций

Тема: Свойства тригонометрических функций. Цель:. Повторить, закрепить, обобщить свойства тригонометрических функций. Совершенствовать умения и ...
Нахождение значений тригонометрических функций от аркфункций

Нахождение значений тригонометрических функций от аркфункций

Муниципальное бюджетное общеобразовательное учреждение. «Тиксинская средняя общеобразовательная школа №2». Разработка ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Математику уже затем следует учить, что она ум в порядок приводит. М. В. Ломоносов. Урок математики (продолжительность 1ч 20мин). Тема. ...
Исследование функций с помощью производной. Построение графиков

Исследование функций с помощью производной. Построение графиков

БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ. СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ. . ВОЛОГОДСКОЙ ОБЛАСТИ. «Череповецкий лесомеханический техникум ...
Экскурс в мир тригонометрических функций

Экскурс в мир тригонометрических функций

Славенко Н. В. МОУ СОШ № 32 г. . г Братск. . . Урок обобщающего повторения в 11 классе. . «Экскурс в мир тригонометрических функций». . ...
Исследование взаимного расположения графиков линейных функций

Исследование взаимного расположения графиков линейных функций

МОУ ООШ с. Иран, учитель математики Джабиева Рита Алексеевна. . Пояснительная записка. Предмет:. алгебра. Класс:. 7. Тема:. «. Исследование ...
Исследование свойств функций и построение графиков

Исследование свойств функций и построение графиков

Информационно-коммуникационные технологии. Интегрированный урок. 10 класс Алгебра и начала анализа + информатика. 2 урока. Тема. : «Исследование ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:21 марта 2019
Категория:Математика
Содержит:19 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации