- Применение свойств тригонометрических функций

Презентация "Применение свойств тригонометрических функций" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15

Презентацию на тему "Применение свойств тригонометрических функций" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 15 слайд(ов).

Слайды презентации

ПРИМЕНЕНИЕ СВОЙСТВ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ
Слайд 1

ПРИМЕНЕНИЕ СВОЙСТВ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Графики тригонометрических функций
Слайд 2

Графики тригонометрических функций

График какой функции изображен на рисунке? Y = cos 0.5 x Y = 2cos x Y = 2cos 0.5x Y = 2 sin x
Слайд 4

График какой функции изображен на рисунке?

Y = cos 0.5 x Y = 2cos x Y = 2cos 0.5x Y = 2 sin x

1.Y = sin0.5x 2. Y = sin 2x 3. Y = - sin2x 4. Y = cos0.5x
Слайд 5

1.Y = sin0.5x 2. Y = sin 2x 3. Y = - sin2x 4. Y = cos0.5x

Y = 2sinx Y = 2sin 2x Y = sin2x Y = 2cos2x
Слайд 6

Y = 2sinx Y = 2sin 2x Y = sin2x Y = 2cos2x

Найди ошибку: У = cos x + 1
Слайд 7

Найди ошибку: У = cos x + 1

Y = 2sin x
Слайд 8

Y = 2sin x

Укажите множество значений функции. Y = sin 3x + 2 1. [-2; 2] 2. [-1; 5] 3. [1; 3] 4. [-3; 3]
Слайд 9

Укажите множество значений функции

Y = sin 3x + 2 1. [-2; 2] 2. [-1; 5] 3. [1; 3] 4. [-3; 3]

Y = COS2 4x – 4 1. [-4; 4] 2.[-5; -3] 3. [1; 4] 4. [-4 ; -3]
Слайд 10

Y = COS2 4x – 4 1. [-4; 4] 2.[-5; -3] 3. [1; 4] 4. [-4 ; -3]

Y = tg x + 2 1. [0; +∞] 2. (-∞; +∞) 3. [2; +∞] 4. (2; +∞)
Слайд 11

Y = tg x + 2 1. [0; +∞] 2. (-∞; +∞) 3. [2; +∞] 4. (2; +∞)

Укажите функцию, множеством значений которой является промежуток. [-3; 1] 1. Y = COS X – 1 2. Y = 2 SIN X - 1 3. Y = -2SIN X – 1 4. Y = 3 COS X
Слайд 12

Укажите функцию, множеством значений которой является промежуток

[-3; 1] 1. Y = COS X – 1 2. Y = 2 SIN X - 1 3. Y = -2SIN X – 1 4. Y = 3 COS X

Эйлер Леонард (1707– 1783) крупнейший математик XVIII столетия
Слайд 13

Эйлер Леонард (1707– 1783) крупнейший математик XVIII столетия

ПРОВЕРЬ СЕБЯ! 1. [-4; 4] 2. [1; 3] 3. 5 4. Y = - SIN X + 1
Слайд 15

ПРОВЕРЬ СЕБЯ!

1. [-4; 4] 2. [1; 3] 3. 5 4. Y = - SIN X + 1

Список похожих презентаций

Общие свойства функций

Общие свойства функций

Вариант 1 Вариант 2 Задача 1. Найти область определения функции. Задача 2. Функция f(x) возрастающая. Сравните f(3) и f(5). Функция f(x) убывающая. ...
Основные свойства функций

Основные свойства функций

Определение. Числовой функцией с областью определения D называется соответствие, при котором каждому числу х из множества D сопоставляется по некоторому ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Цели урока:. Обобщить и систематизировать знания учащихся по теме. Показать актуальность темы в связи с введением ЕГЭ в штатный режим. Показать возможности ...
Нахождение значений тригонометрических функций с помощью таблиц Брадиса

Нахождение значений тригонометрических функций с помощью таблиц Брадиса

Четырёхзначные таблицы В.М. Брадиса. Владимир Модестович Брадис - математик, педагог. Родился 23 декабря 1890 года в семье учителей начальной школы ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Параллельный перенос на вектор (0; b) вдоль оси ординат: График функции f(x)+b получается параллельным переносом графика f(x) в положительном направлении ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

y = cos(x+2) y=cos2x y=sinx +2 y=-3cosx y=sin1/2x y=sin(x-5) y=tg2x y=2ctgx y=ctg1/3x y=1/3sinx y=4-cosx y=ctgx+1. Сгруппируйте функции по какому-нибудь ...
Построение графиков тригонометрических функций

Построение графиков тригонометрических функций

формирование знаний и умений преобразовать графики тригонометрических функций. Цель:. Закрепить применение программы MS Excel для построения графиков ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Цель урока:. Повторить свойства тригонометрических функций Изучить графическую программу Advanced Grapher, облегчающую построение графиков Изучить ...
Исследование тригонометрических функций

Исследование тригонометрических функций

Содержание. Область определения функции Область значения функции Периодичность Промежутки знакопостоянства Четность и нечетность функций Возрастание ...
Применение неравенств и их свойств

Применение неравенств и их свойств

научиться применять теорию о числовых неравенствах при решении смешанных задач. развивать умение применять свойства числовых неравенств в нестандартной ...
Графики тригонометрических функций

Графики тригонометрических функций

тригонометрические функции. Графиком функции у = sin x является синусоида. Свойства функции: D(y) =R Периодическая (Т=2p) Нечетная (sin(-x)=-sin x) ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Оборудование урока: компьютер, проектор, экран. Цели: Обобщить знания и умения. Развить умение наблюдать, сравнить, обобщать. Воспитать познавательную ...
Дополнения к значениям тригонометрических функций

Дополнения к значениям тригонометрических функций

Цели и задачи работы:. Нахождение способов вычисления значений тригонометрических функций нестандартных углов; Изучение литературы о тригонометрии ...
Применение векторов к решению задач

Применение векторов к решению задач

Цели: Показать применение векторов при решении геометрических задач на конкретных примерах; Совершенствовать навыки выполнения действий над векторами. ...
Преобразование функций

Преобразование функций

Задачи урока. Повторить правила преобразований:. Построить преобразования тригонометрических функций:. Изучить гармоническую функцию:. Преобразование: ...
Преобразование графиков функций на координатной плоскости

Преобразование графиков функций на координатной плоскости

Эпиграф к уроку. Красота в единстве теории и практики. Цели обучения, воспитания и развития. Рациональные способы построения графиков функций. Развитие ...
Построение диаграмм и графиков функций

Построение диаграмм и графиков функций

Диаграмма (график) — это наглядное графическое представление числовых данных. Основные типы диаграмм. Линейчатая Круговая Линии (график). показывает ...
Построение графиков функций, содержащих выражения под знаком модуля

Построение графиков функций, содержащих выражения под знаком модуля

Цель работы:. построение графиков графики функций, содержащие выражения под знаком модуля. Частный случай (под знаком модуля одно выражение и нет ...
Алгебра функций

Алгебра функций

Конспект занятия. Учитель Винник Надежда Анатольевна Предмет: Элективный курс по математике «Алгебра функций» Тип занятия: занятие-практикум Тема ...
Графики функций с модулями

Графики функций с модулями

Цель работы:. Научится строить графики функций с модулями. Хорошая подготовка к ЕГЭ. 1 ФУНКЦИЯ С МОДУЛЕМ. Y=lXl Строим график функции у = x Из-за ...

Конспекты

Применение свойства монотонности функций при решении уравнений и неравенств

Применение свойства монотонности функций при решении уравнений и неравенств

Тамбовское областное государственное автономное образовательное учреждение – общеобразовательная школа – интернат. . «Мичуринский лицей». ...
Применение свойств рациональных чисел для рационализации вычислений

Применение свойств рациональных чисел для рационализации вычислений

Тема: Применение свойств рациональных чисел для рационализации вычислений. Тип урока:. Формирование умений и навыков. Цели урока:. Обучающие:. ...
Производные функций и применение производной

Производные функций и применение производной

Государственное бюджетное общеобразовательное учреждение. . средняя общеобразовательная школа с. Чёрный Ключ. . муниципального района Клявлинский ...
Применение свойств квадратного корня

Применение свойств квадратного корня

План- конспект урока. Применение свойств квадратного корня. (Тема урока). . ФИО (полностью):. . Старикова Валентина Валерьевна. . ...
Применение тригонометрических формул к преобразованию выражений

Применение тригонометрических формул к преобразованию выражений

МБОУ гимназия №4. г.Озёры Московская область. Урок по теме:. 10 класс. Учитель математики Хлыстова Т.В. Конспект урока по алгебре ...
Применение свойств квадратных корней

Применение свойств квадратных корней

Урок по алгебре в 8 классе. Учитель:. Патрина Татьяна Николаевна, МОУ СОШ №120 с углубленным изучением отдельных предметов Московского района города ...
Применение свойств арифметического квадратного корня

Применение свойств арифметического квадратного корня

Урок математики по теме: "Применение свойств арифметического квадратного корня" (8-й класс). . Аксютченко. . Жанна Владимировна,. учитель математики. ...
Применение свойств арифметического квадратного корня

Применение свойств арифметического квадратного корня

ПЛАН-КОНСПЕКТ УРОКА «Применение свойств арифметического квадратного корня». . ФИО (полностью). . . Рыжова Наталья Михайловна. . ...
Применение распределительного свойства умножения

Применение распределительного свойства умножения

Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа пос. Молодёжный». Альметьевский муниципальный район. ...
Применение распределительного свойства умножения

Применение распределительного свойства умножения

«Применение распределительного свойства умножения». Цели. : закрепить умения в использовании распределительного свойства умножения при решении примеров, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 апреля 2019
Категория:Математика
Содержит:15 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации