» » » Свойства определённого интеграла

Презентация на тему Свойства определённого интеграла

tapinapura

Презентацию на тему Свойства определённого интеграла можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайдов.

скачать презентацию

Слайды презентации

Слайд 1: Презентация Свойства определённого интеграла
Слайд 1

Тема:

Определенный интеграл, его основные свойства. Формула Ньютона- Лейбница. Приложения определенного интеграла.

Слайд 2: Презентация Свойства определённого интеграла
Слайд 2

ПЛАН

Понятие определенного интеграла. Свойства определенного интеграла. Метод замены переменной. Несобственные интегралы. Приложения определенного интеграла.

Слайд 3: Презентация Свойства определённого интеграла
Слайд 3

1. Понятие определенного интеграла

К понятию определенного интеграла приводит задача нахождения площади криволинейной трапеции. Пусть на некотором интервале [a,b] задана непрерывная функция Задача: Построить ее график и найти F площадь фигуры, ограниченной этой кривой, двумя прямыми x = a и x = b, а снизу – отрезком оси абсцисс между точками x = a и x = b.

Слайд 4: Презентация Свойства определённого интеграла
Слайд 4

Фигура aABb называется криволинейной трапецией

Слайд 5: Презентация Свойства определённого интеграла
Слайд 5

Def.

Под определенным интегралом от данной непрерывной функции f(x) на данном отрезке [a;b] понимается соответствующее приращение ее первообразной, то есть Числа a и b – пределы интегрирования, [a;b] – промежуток интегрирования.

Слайд 6: Презентация Свойства определённого интеграла
Слайд 6

Правило:

Определенный интеграл равен разности значений первообразной подынтегральной функции для верхнего и нижнего пределов интегрирования. Введя обозначения для разности

Формула Ньютона – Лейбница.

Слайд 7: Презентация Свойства определённого интеграла
Слайд 7

Готфрид Вильгельм Лейбниц

(1646 – 1716 гг.) Выдающийся немецкий мыслитель Готфрид Вильгельм Лейбниц принадлежал к роду, известному своими учеными и политическими деятелями. Он изобретал всевозможные универсальные приемы для решения всех задач сразу и, может быть, поэтому вслед за Паскалем стал строить вычислительные устройства.

Слайд 8: Презентация Свойства определённого интеграла
Слайд 8

Исаак НЬЮТОН (Newton)

(04.01.1643 - 31.03.1727) Английский физик и математик, создатель теоретических основ механики и астрономии. Он открыл закон всемирного тяготения, разработал (наряду с Г. Лейбницем) дифференциальное и интегральное исчисления, изобрел зеркальный телескоп и был автором важнейших экспериментальных работ по оптике. Ньютона по праву считают создателем "классической физики".

Слайд 9: Презентация Свойства определённого интеграла
Слайд 9

2. Основные свойства определенного интеграла.

1)Величина определенного интеграла не зависит от обозначения переменной интегрирования, т.е. где x и t – любые буквы. 2)Определенный интеграл с одинаковыми пределами интегрирования равен нулю

Слайд 10: Презентация Свойства определённого интеграла
Слайд 10

3) При перестановке пределов интегрирования определенный интеграл меняет свой знак на обратный (свойство аддитивности) 4) Если промежуток [a;b] разбит на конечное число частичных промежутков, то определенный интеграл, взятый по промежутку [a;b], равен сумме определенных интегралов, взятых по всем его частичным промежуткам.

Слайд 11: Презентация Свойства определённого интеграла
Слайд 11

5)Постоянный множитель можно выносить за знак определенного интеграла. 6)Определенный интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме определенных интегралов от этих функций.

Слайд 12: Презентация Свойства определённого интеграла
Слайд 12

3. Замена переменной в определенном интеграле.

где для , функции и непрерывны на . Пример: = =

Слайд 13: Презентация Свойства определённого интеграла
Слайд 13

4. Несобственные интегралы.

Def: Пусть функция f(x) определена на бесконечном интервале [a; + ) и интегрируется на любом интервале [a;b], где b

Слайд 14: Презентация Свойства определённого интеграла
Слайд 14

Таким образом, по определению, Если этот предел - некоторое число, то интеграл называется сходящимся, если предела не существует, или он равен , то говорят, что интеграл расходится.

Слайд 15: Презентация Свойства определённого интеграла
Слайд 15

ПУАССОН, СИМЕОН ДЕНИ (Poisson, Simeon-Denis)

(1781–1840 гг.) Французский математик, механик и физик. В 1811 он вывел получившее широкое применение уравнение, связывающее электрический потенциал с плотностью пространственного распределения заряда (уравнение Пуассона).

Слайд 16: Презентация Свойства определённого интеграла
Слайд 16

Интеграл Пуассона:

если а = 1, то Интеграл сходится, и его значение .

Слайд 17: Презентация Свойства определённого интеграла
Слайд 17

5. Приложения определенного интеграла

1) Площадь плоских фигур. а) если б) если в)

Слайд 18: Презентация Свойства определённого интеграла
Слайд 18

г) 2) интеграл от величины силы по длине пути.

Слайд 19: Презентация Свойства определённого интеграла
Слайд 19

3) Прирост численности популяции.

N(t) прирост численности за промежуток времени от t0 до T, v(t) – скорость роста некоторой популяции. интеграл от скорости по интервалу времени ее размножения.

Список похожих презентаций

  • Яндекс.Метрика
  • Рейтинг@Mail.ru