- Свойства и графики элементарных функций

Презентация "Свойства и графики элементарных функций" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22

Презентацию на тему "Свойства и графики элементарных функций" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 22 слайд(ов).

Слайды презентации

Федеральное агентство по образованию. Государственное образовательное учреждение Среднего профессионального образования. Димитровградский технический колледж. Проект Верещука Станислава. Тема: «Свойства и графики элементарных функций». Руководитель: преподаватель Кузьмина В.В. Димитровград 2007
Слайд 1

Федеральное агентство по образованию. Государственное образовательное учреждение Среднего профессионального образования. Димитровградский технический колледж. Проект Верещука Станислава. Тема: «Свойства и графики элементарных функций». Руководитель: преподаватель Кузьмина В.В. Димитровград 2007

1. Определение функции. 2. Линейная функция: возрастающая; убывающая; частные случаи. 3. Квадратичная функция. 4. Степенная функция: с четным натуральным показателем; с нечетным натуральным показателем; с целым отрицательным показателем; с действительным показателем. 5. Список использованной литерат
Слайд 2

1. Определение функции. 2. Линейная функция: возрастающая; убывающая; частные случаи. 3. Квадратичная функция. 4. Степенная функция: с четным натуральным показателем; с нечетным натуральным показателем; с целым отрицательным показателем; с действительным показателем. 5. Список использованной литературы.

Содержание:

Определение функции. Отношение между элементами двух множеств X и Y , при котором каждому элементу x первого множества соответствует один элемент у второго множества, называется функцией и записывают у = f(x). Все значения , которые принимает независимая переменная x, называют областью определения ф
Слайд 3

Определение функции.

Отношение между элементами двух множеств X и Y , при котором каждому элементу x первого множества соответствует один элемент у второго множества, называется функцией и записывают у = f(x). Все значения , которые принимает независимая переменная x, называют областью определения функции. Все значения, которые принимает зависимая переменная y, называют множеством значений функций или областью значений функции. Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты равны соответствующим значениям функции.

Линейная функция. Функция, заданная формулой y=kx+b, где k и b- некоторые действительные числа называется линейной.
Слайд 4

Линейная функция.

Функция, заданная формулой y=kx+b, где k и b- некоторые действительные числа называется линейной.

Свойства линейной функции (при условии k > 0 и b 0): Областью определения функции является множество всех действительных чисел D(f)=R. Множество значений линейной функции - множество всех действительных чисел E(f)=R. При k>0 функция возрастает. y=kx+b (k>0)
Слайд 5

Свойства линейной функции (при условии k > 0 и b 0):

Областью определения функции является множество всех действительных чисел D(f)=R. Множество значений линейной функции - множество всех действительных чисел E(f)=R. При k>0 функция возрастает.

y=kx+b (k>0)

Свойства линейной функции (при условии k < 0 и b 0): 4. При k
Слайд 6

Свойства линейной функции (при условии k < 0 и b 0):

4. При k<0 функция убывает. 5. Линейная функция не является ни четной, ни нечетной. Графиком линейной функции является прямая. Для построения графика линейной функции достаточно определить координаты двух точек графика и через них провести прямую.

y=kx+b (k<0)

Частные случаи линейной функции: 1.Если b=0, то линейная функция задаётся формулой y=кx. Такая функция называется прямой пропорциональностью. Графиком прямой пропорциональности является прямая, проходящая через начало координат. y=кx (k>0) y=кx (k
Слайд 7

Частные случаи линейной функции:

1.Если b=0, то линейная функция задаётся формулой y=кx. Такая функция называется прямой пропорциональностью. Графиком прямой пропорциональности является прямая, проходящая через начало координат.

y=кx (k>0) y=кx (k<0)

2.Если k=0, то линейная функция задаётся формулой y=b. Такая функция называется постоянной. Графиком постоянной функции является прямая, параллельная оси Ох. Если k=0 u b=0, то график постоянной функции совпадает с осью Ох.
Слайд 8

2.Если k=0, то линейная функция задаётся формулой y=b. Такая функция называется постоянной. Графиком постоянной функции является прямая, параллельная оси Ох. Если k=0 u b=0, то график постоянной функции совпадает с осью Ох.

Квадратичная функция. Функция, задаваемая формулой y=ax2+bx+c - называется квадратичной, где x-независимая переменная, a b,c- некоторые числа, причем a не равняется 0.
Слайд 9

Квадратичная функция.

Функция, задаваемая формулой y=ax2+bx+c - называется квадратичной, где x-независимая переменная, a b,c- некоторые числа, причем a не равняется 0.

Областью определения квадратичной функции является D(f)=R - множество всех действительных чисел. Графиком квадратичной функции является парабола. Осью симметрии параболы служит прямая x= -
Слайд 10

Областью определения квадратичной функции является D(f)=R - множество всех действительных чисел. Графиком квадратичной функции является парабола. Осью симметрии параболы служит прямая x= -

Точки пересечения параболы с осью ox являются точки с координатами (2;0) и (3;0). Точка x0 = - позволяет найти абсциссу вершины параболы. y = x2-5x+6
Слайд 11

Точки пересечения параболы с осью ox являются точки с координатами (2;0) и (3;0). Точка x0 = - позволяет найти абсциссу вершины параболы.

y = x2-5x+6

В простейшем случае (b=c=0) графиком функции y=ax2 есть парабола, проходящая через начало координат. y = 0.5 x2
Слайд 12

В простейшем случае (b=c=0) графиком функции y=ax2 есть парабола, проходящая через начало координат.

y = 0.5 x2

На слайде представлены графики функций: y = y = y= y= y= y=
Слайд 13

На слайде представлены графики функций: y = y = y= y= y= y=

Степенная функция. Функция, заданная формулой y=xn, где n- натуральное число, называется степенной функцией с натуральным показателем.
Слайд 14

Степенная функция.

Функция, заданная формулой y=xn, где n- натуральное число, называется степенной функцией с натуральным показателем.

Свойства степенной функции с чётным натуральным показателем: Область определения D(f)=R - множество всех действительных чисел. Область значений E(f)=R+ - множество всех неотрицательных чисел. Функция является четной т.е. f(-x)=f(x). Нули функции: y=0 при x=0. Функция убывает от - до 0 при х € (- ,0]
Слайд 15

Свойства степенной функции с чётным натуральным показателем:

Область определения D(f)=R - множество всех действительных чисел. Область значений E(f)=R+ - множество всех неотрицательных чисел. Функция является четной т.е. f(-x)=f(x). Нули функции: y=0 при x=0. Функция убывает от - до 0 при х € (- ,0]. Функция возрастает от 0 до + при х € [0,+ ). Производная вычисляется по формуле: (xn)`=nxn-1. .

y = x2 ; y = x4

Если n=1, то функция, задана формулой y = x. Такая функция является прямой пропорциональностью. Если n=3, то функция задана формулой y = x3. Её графиком является кубическая парабола. Если n - нечётное натуральное число и n не равно 1, то функция обладает теми же свойствами, что и y = x3. Свойства ст
Слайд 16

Если n=1, то функция, задана формулой y = x. Такая функция является прямой пропорциональностью. Если n=3, то функция задана формулой y = x3. Её графиком является кубическая парабола. Если n - нечётное натуральное число и n не равно 1, то функция обладает теми же свойствами, что и y = x3.

Свойства степенной функции с нечётным натуральным показателем:

y = x3; y = x5

Свойства степенной функции с нечетным показателем n, не равным 1: Область определения D(f)=R – множество всех действительных чисел. Область значений E(f)=R - множество всех действительных чисел. Функция является нечетной, т.е. f(-x)= -f(x). Нули функции: y=0 при x=0. Функция возрастает на всей облас
Слайд 17

Свойства степенной функции с нечетным показателем n, не равным 1:

Область определения D(f)=R – множество всех действительных чисел. Область значений E(f)=R - множество всех действительных чисел. Функция является нечетной, т.е. f(-x)= -f(x). Нули функции: y=0 при x=0. Функция возрастает на всей области определения. Производная вычисляется по формуле: (xn)`=nxn-1.

Степенная функция с целым отрицательным показателем. Функция заданная формулой y = x-n, где n- натуральное число, называется степенной функцией с целым отрицательным показателем. Если n=1, то такая функция является обратной пропорциональностью, y = x -1 =1/x
Слайд 18

Степенная функция с целым отрицательным показателем.

Функция заданная формулой y = x-n, где n- натуральное число, называется степенной функцией с целым отрицательным показателем. Если n=1, то такая функция является обратной пропорциональностью, y = x -1 =1/x

Степенная функция с целым отрицательным показателем, n - нечетное. Если n - нечетное число, то функция обладает аналогичными свойствами, что и функция y =1/x. Область определения D(f) = (- ,0)U (0, ) 2. Область значений E(f) = (- ,0)U (0, )
Слайд 19

Степенная функция с целым отрицательным показателем, n - нечетное

Если n - нечетное число, то функция обладает аналогичными свойствами, что и функция y =1/x. Область определения D(f) = (- ,0)U (0, ) 2. Область значений E(f) = (- ,0)U (0, )

Область определения- множество всех действительных чисел, кроме нуля. Область значений- множество всех положительных чисел. Функция четная, т.е. f(-x)=f(x). Функция убывает на промежутке (0, + ) и возрастает на промежутке (- ,0). Свойства функции y = x -n, где n - четное число: y = x -2=1/x2
Слайд 20

Область определения- множество всех действительных чисел, кроме нуля. Область значений- множество всех положительных чисел. Функция четная, т.е. f(-x)=f(x). Функция убывает на промежутке (0, + ) и возрастает на промежутке (- ,0).

Свойства функции y = x -n, где n - четное число:

y = x -2=1/x2

Степенная функция с действительным показателем. Функция вида y=xp, где p - любое действительное число, называется степенной функцией с действительным показателем.
Слайд 21

Степенная функция с действительным показателем.

Функция вида y=xp, где p - любое действительное число, называется степенной функцией с действительным показателем.

Литература. Дадаян А.А. Математика: Учебник.- М.:ФОРУМ: ИНФРА-М, 2006 Математика.Справочник школьника. Филологическое общество «Слово». Москва 1995. 3. Программное обеспечение : MS PowerPoint, MS Microsoft Word, математический пакет Mathcad.
Слайд 22

Литература.

Дадаян А.А. Математика: Учебник.- М.:ФОРУМ: ИНФРА-М, 2006 Математика.Справочник школьника. Филологическое общество «Слово». Москва 1995. 3. Программное обеспечение : MS PowerPoint, MS Microsoft Word, математический пакет Mathcad.

Список похожих презентаций

I Функция У=АХ², её график и свойства

I Функция У=АХ², её график и свойства

А=1 У=Х ². А=2 У=2Х ². У=Х² У=2Х². Растяжение от оси Х в два раза. А=0.5 У=Х² У=0.5Х². Сжатие по оси Х в два раза. Вообще график функции У=АХ² можно ...
"Алгоритм. Свойства алгоритма".

"Алгоритм. Свойства алгоритма".

как подготовить информацию к обработке на компьютере как воспользоваться компьютером для обработки информации. В В Е Д Е Н И Е. ИНФОРМАТИКУ ИЗУЧАЮТ ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Взаимное расположение графиков функций"

"Взаимное расположение графиков функций"

угловой коэффициент прямой, условие параллельности прямых. ТЕМА УРОКА:. Давайте узнаем имя одного математика, который ввел обозначение функций. Для ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
«Решение задания С1 ЕГЭ по информатике и ИКТ»

«Решение задания С1 ЕГЭ по информатике и ИКТ»

2 балла. Решение задания С1 ЕГЭ по информатике и ИКТ.  Кунина В.В. область I  область II. 0 x y y = x+2 y2 + x2 = 25 y2 + x2  25 y  0 x  0 область ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...

Конспекты

Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Урок - повторение по теме: «Арифметический квадратный корень и его свойства». . . Учитель Переверзева М.В. МБОУСОШ «11. . Цель: подвести итоги ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Конспект урока математики в 10 классе. Жирнова С.В. учитель математики. Тема урока:. «Арифметический квадратный корень и его свойства». Тип урока. ...
Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов. . КАЗАХСТАН. ЮЖНО-КАЗАХСТАНСКАЯ ОБЛАСТЬ. Г.ШЫМКЕНТ, ОСНОВНАЯ СРЕДНЯЯ ШКОЛА №97. ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
В царстве функций

В царстве функций

«В царстве функций». Учитель:. Черная Марина Михайловна. Класс:. 10. Цель урока:. отработка знаний учащихся по теме «Свойства функций», подготовка ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Верные и неверные равенства и неравенства

Верные и неверные равенства и неравенства

Муниципальное бюджетное образовательное учреждение. средняя общеобразовательная школа №1. . города Ярцева Смоленской области. . Конспект ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Величины (длина, масса, время, объем) и единицы измерения

Величины (длина, масса, время, объем) и единицы измерения

Математика 3-1-8. . Тема урока. :. Величины (длина, масса, время, объем) и единицы. . измерения. Цели:. повторить единицы измерения массы, ...
В мир одночленов и многочленов

В мир одночленов и многочленов

Алгебра 7 класс. Урок – путешествие «В мир одночленов и многочленов». Цели:. обеспечить повторение и систематизацию материала темы; создать ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 марта 2019
Категория:Математика
Содержит:22 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации