- Применение производной для исследования функций

Презентация "Применение производной для исследования функций" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Применение производной для исследования функций" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

Применение производной для исследования функций. 1. Нахождение промежутков возрастания функции. 2. Нахождение промежутков убывания функции. 3. Нахождение промежутков постоянства функции. 4. Нахождение экстремумов. 5. Решение уравнений. 6.Нахождение наибольшего и наименьшего значения функции, непреры
Слайд 1

Применение производной для исследования функций.

1. Нахождение промежутков возрастания функции. 2. Нахождение промежутков убывания функции. 3. Нахождение промежутков постоянства функции. 4. Нахождение экстремумов. 5. Решение уравнений. 6.Нахождение наибольшего и наименьшего значения функции, непрерывной на отрезке.

Монотонность функции. Убывает на (-;x, x) Возрастает на х1; х2. Постоянна на а;в. у х У=f(x) x1 а в
Слайд 2

Монотонность функции

Убывает на (-;x, x) Возрастает на х1; х2. Постоянна на а;в

у х У=f(x) x1 а в

Исследование функции на возрастание. У Х. Если f '(x) >0 в каждой точке интервала I, то функция f монотонно возрастает на интервале I. АЛГОРИТМ D(f) f '(x) Решить неравенство f '(x)>0 4. Выписать промежутки, где производная имеет знак «+». у=f(x) х2 х1
Слайд 3

Исследование функции на возрастание

У Х

Если f '(x) >0 в каждой точке интервала I, то функция f монотонно возрастает на интервале I. АЛГОРИТМ D(f) f '(x) Решить неравенство f '(x)>0 4. Выписать промежутки, где производная имеет знак «+».

у=f(x) х2 х1

Исследование функции на убывание. Если в каждой точке интервала I f '(x)
Слайд 4

Исследование функции на убывание

Если в каждой точке интервала I f '(x)<0, то функция у = f(x) монотонно убывает на этом промежутке. АЛГОРИТМ D(f) f '(x) Решить неравенство f '(()) <0 4. Выписать промежутки , где производная имеет знак «-».

Х 0 х0 У = f(x)

Исследование функции на постоянство. у у = f(x) о х а в. Функция у = f(x) постоянна на интервале (а; в) тогда и только тогда , когда f '(x) = 0 в каждой точке этого интервала.
Слайд 5

Исследование функции на постоянство

у у = f(x) о х а в

Функция у = f(x) постоянна на интервале (а; в) тогда и только тогда , когда f '(x) = 0 в каждой точке этого интервала.

ЭКСТРЕМУМЫ. Необходимое условие экстремума Если Х0 – точка экстремума функции У = f(x) , то эта точка является критической точкой данной функции, т.е. в этой точке производная либо равна нулю, либо она не существует. Если f '(x)>0 при х < x0 и f '(x) x0 , то Х0 – точка максимума. ДОСТАТОЧНОЕ У
Слайд 6

ЭКСТРЕМУМЫ

Необходимое условие экстремума Если Х0 – точка экстремума функции У = f(x) , то эта точка является критической точкой данной функции, т.е. в этой точке производная либо равна нулю, либо она не существует.

Если f '(x)>0 при х < x0 и f '(x)<0 при х > x0 , то Х0 – точка максимума.

ДОСТАТОЧНОЕ УСЛОВИЕ ЭКСТРЕМУМА Если функция у = f(x) непрерывна в точке Х0 и производная f '(x) меняет знак в этой точке , то Х0 – ТОЧКА ЭКСТРЕМУМА функции у = f (x)

Если f '(x)<0 при х0 при x>Х0 , то Х0 – точка минимума.

f '(x)>0 f '(x)=0 f '(x)<0 Х мах Х min f '- НЕ СУЩЕСТВУЕТ Хмах У ?

СХЕМА ПРИМЕНЕНИЯ ПРОИЗВОДНОЙ ДЛЯ НАХОЖДЕНИЯ ИНТЕРВАЛОВ МОНОТОННОСТИ И ЭКСТРЕМУМОВ. Характер изменения функции. - 2 3 + -
Слайд 7

СХЕМА ПРИМЕНЕНИЯ ПРОИЗВОДНОЙ ДЛЯ НАХОЖДЕНИЯ ИНТЕРВАЛОВ МОНОТОННОСТИ И ЭКСТРЕМУМОВ

Характер изменения функции

- 2 3 + -

А с и м п т о т ы. Прямая у = кх +в называется асимптотой графика функции у = f(x) , если расстояние от точки М графика функции до прямой у = кх + в стремиться к нулю при бесконечном удалении точки М. Прямая х = а является вертикальной асимптотой графика функции у = f(x), если lim f(x) = ∞ х→ а Прям
Слайд 8

А с и м п т о т ы

Прямая у = кх +в называется асимптотой графика функции у = f(x) , если расстояние от точки М графика функции до прямой у = кх + в стремиться к нулю при бесконечном удалении точки М.

Прямая х = а является вертикальной асимптотой графика функции у = f(x), если lim f(x) = ∞ х→ а Прямая у = в является горизонтальной асимптотой графика функции у = f(x), если lim f(x)=b х→∞ Прямая у = кх + в является наклонной асимптотой графика функции у = f(x), если lim f(x) =к х →∞ х lim ( f(x)─kx ) = b Х→∞

У у = в У= f(x) Х = а М. .М 0 Х . М у = кх + в y=f(x)

СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ И ПОСТРОЕНИЕ ЕЁ ГРАФИКА. НАХОЖДЕНИЕ ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ОБЛАСТИ ЗНАЧЕНИЙ ФУНКЦИИ. ИССЛЕДОВАНИЕ ФУНКЦИИ НА ЧЕТНОСТЬ И НЕЧЕТНОСТЬ. ИССЛЕДОВАНИЕ ФУНКЦИИ НА ПЕРИОДИЧНОСТЬ. ОПРЕДЕЛЕНИЕ ТОЧЕК ПЕРЕСЕЧЕНИЯ ГРАФИКА ФУНКЦИИ С ОСЯМИ КООРДИНАТ И ИНТЕРВАЛОВ, ГДЕ ФУНКЦИЯ СОХРАНЯЕТ ЗНА
Слайд 9

СХЕМА ИССЛЕДОВАНИЯ ФУНКЦИИ И ПОСТРОЕНИЕ ЕЁ ГРАФИКА.

НАХОЖДЕНИЕ ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ОБЛАСТИ ЗНАЧЕНИЙ ФУНКЦИИ. ИССЛЕДОВАНИЕ ФУНКЦИИ НА ЧЕТНОСТЬ И НЕЧЕТНОСТЬ. ИССЛЕДОВАНИЕ ФУНКЦИИ НА ПЕРИОДИЧНОСТЬ. ОПРЕДЕЛЕНИЕ ТОЧЕК ПЕРЕСЕЧЕНИЯ ГРАФИКА ФУНКЦИИ С ОСЯМИ КООРДИНАТ И ИНТЕРВАЛОВ, ГДЕ ФУНКЦИЯ СОХРАНЯЕТ ЗНАК. НАХОЖДЕНИЕ АСИМПТОТ ГРАФИКА ФУНКЦИИ. ОПРЕДЕЛЕНИЕ ТОЧЕК ЭКСТРЕМУМОВ ФУНКЦИИ. ПОСТРОЕНИЕ ГРАФИКА.

Наибольшее и наименьшее значение функции, непрерывной на отрезке. Функция, непрерывная на отрезке, достигает своего наибольшего и наименьшего значений на этом отрезке либо в критических точках, принадлежащих отрезку, либо на его концах. f(b) у =f(x) f(a) f(xmin) 0 а Хmin в х Хmax maх f(x) = f (xmax)
Слайд 10

Наибольшее и наименьшее значение функции, непрерывной на отрезке.

Функция, непрерывная на отрезке, достигает своего наибольшего и наименьшего значений на этом отрезке либо в критических точках, принадлежащих отрезку, либо на его концах.

f(b) у =f(x) f(a) f(xmin) 0 а Хmin в х Хmax maх f(x) = f (xmax) [a;b] min f(x) = f (xmin) [a;b]

0 а Хmax в х min f(x)=f(b) [a;b] max f(x)=f(xmax) у [а;b]

0 а Хmin Хmax b х maxf(x)=f(a) [а;b] minf(x)=f(b) [a;b]

f(xmax) f(b) f(a) f(xmin)

۩ Схема нахождения наибольшего и наименьшего значений функции, непрерывной на отрезке. ЭТАПЫ Найти производную Найти на данном отрезке критические точки, т.е. точки, в которых f’(x)=0 или не существует Вычислить значения функции в критических точках и на концах отрезка. Из вычисленных значений выбра
Слайд 11

۩ Схема нахождения наибольшего и наименьшего значений функции, непрерывной на отрезке

ЭТАПЫ Найти производную Найти на данном отрезке критические точки, т.е. точки, в которых f’(x)=0 или не существует Вычислить значения функции в критических точках и на концах отрезка. Из вычисленных значений выбрать наименьшее и наибольшее.

пример для функции у = 2x³-3x²-36x+5 на отрезке [0;4] f ' (x)=6x²-6x-36 f '(x)=0 при х = -2 и при х = 3. Отрезку [0;4] принадлежит только одна критическая точка: х = 3. 3. f (0)=5; f (3)=-76; f (4)=-59 4. max f(x)=f(0)=5; min f(x)=f(3)=-76 [0;4] [0;4]

Список похожих презентаций

«Применение производной для исследования функции»

«Применение производной для исследования функции»

Справимся легко! №1. По графику функции y=f(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько ...
Применение производной

Применение производной

Дифференциальное исчисление создано Ньютоном и Лейбницем сравнительно недавно, в конце 17 столетия. Тем более поразительно, что за долго до этого ...
Применение производной

Применение производной

Творческое название Гимн производной. Флюксия! Слово прекрасное, может, волшебное? Флюксия! Петь даже хочется что-то душевное. Флюксия! Точки экстремума: ...
Применение ИКТ для подготовки к ЕГЭ по математике

Применение ИКТ для подготовки к ЕГЭ по математике

«Тот, кто не смотрит вперед, оказывается позади» Джордж Герберт. Повышение эффективности работы педагога при подготовке учащихся к сдаче ЕГЭ по математике. ...
Применение производной

Применение производной

Функция НЕ функция. у а б 2 Графики функций. . Возрастание и убывание функции. Иду в гору. Функция возрастает на промежутке[b;a]. Иду под гору. Функция ...
Построение графика функции методом ее исследования с помощью производной

Построение графика функции методом ее исследования с помощью производной

доцент кафедры математического образования Батан Любовь Федоровна. учитель математики первой квалификационной категории МОУ лицей № 176 Ткаченко Зоя ...
Практическое применение производной

Практическое применение производной

ОБУЧАЮЩАЯ :. повторить, обобщить, систематизировать знания по данной теме ; показать учащимся необходимость знания материала изученной темы при решении ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

y = cos(x+2) y=cos2x y=sinx +2 y=-3cosx y=sin1/2x y=sin(x-5) y=tg2x y=2ctgx y=ctg1/3x y=1/3sinx y=4-cosx y=ctgx+1. Сгруппируйте функции по какому-нибудь ...
Построение графиков функций

Построение графиков функций

1. Находить особо важные точки графика: - стационарные и критические точки; - точки экстремума; - точки пересечения графика с осями координат; - точки ...
Понятие производной

Понятие производной

Сегодня у нас праздник! Эпиграф: Был этот мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон. А.Поуп. Что такое высшая математика? Когда ...
Общие свойства функций

Общие свойства функций

Вариант 1 Вариант 2 Задача 1. Найти область определения функции. Задача 2. Функция f(x) возрастающая. Сравните f(3) и f(5). Функция f(x) убывающая. ...
Аппроксимация функций

Аппроксимация функций

Многочлен Лагранжа. Перейдем к случаю глобальной интерполяции. Будем искать интерполяционный многочлен в виде линейной комбинации многочленов степени ...
Применение задач линейного программирования в практической деятельности

Применение задач линейного программирования в практической деятельности

Если ученик в школе не научился сам ничего творить, то и в жизни он всегда будет только подражать, копировать, так как мало таких, которые бы, научившись ...
Внеклассное мероприятие по математике для 8 класса Отличники

Внеклассное мероприятие по математике для 8 класса Отличники

1. Способствование проявлению интеллектуальных способностей учащихся. 2. Активизации познавательной деятельности учащихся. 3. Формирование навыков ...
Викторина по математике для 5-6 классов

Викторина по математике для 5-6 классов

1.Половина-треть числа. Какое это число? Ответ: 3/2. 2.За книгу заплатили 60 рублей. И ещё 1/3 стоимости книги. Сколько стоит книга? 90 рублей. 3.Как ...
Виды функций

Виды функций

План. Величины постоянные и переменные Понятие функции: определение функции область определения, значения сложная функция способы задания функции ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Веселый тест. Интеллектуальная разминка. 1. Какие числа употребляются при счете а)природные; б)натуральные; в)искусственные; 2. Как называют верхний ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Какие функции вам известны? Какой формулой задается каждая из этих функций? Как называется переменная x и y в формуле, задающий функцию? Что является ...
Взаимное расположение графиков линейных функций

Взаимное расположение графиков линейных функций

Проверка домашней работы. № 324. у=2х 4 2. № 329 (б). у = 5х А (6; -2); -2 = 5 · 6; -2 ≠ 30; А не принадлежит графику функции В (-2; -10); -10 = 5 ...
Вводное повторени для 8 классов по геометрии

Вводное повторени для 8 классов по геометрии

8 9 10 11 14 15 16 17 18 30 33 34 35 36 1 3 4 5 6 13 19 31 7. Найти: 440 D С О В А ? 2. Дано:. a0 F b0. O. N R M L. a b c 650. . 450 K E 1350 800. ...

Конспекты

Применение производной для исследования функций на монотонность и экстремумы

Применение производной для исследования функций на монотонность и экстремумы

Открытый урок по математике в 10 классе по теме:. «Применение производной для исследования функций на монотонность и экстремумы». Цели и задачи:. ...
Применение производной для исследования функций на монотонность и экстремумы

Применение производной для исследования функций на монотонность и экстремумы

Урок алгебры в 10 классе. по теме: «Применение производной для исследования функций. . на монотонность и экстремумы». Тип урока:. . интегрированный. ...
Применение производной для решения задач

Применение производной для решения задач

5. . Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 8». Рузаевского района Республики Мордовия. ...
Применение производной к исследованию функций и построению графиков

Применение производной к исследованию функций и построению графиков

ОГБОУ СПО «Белгородский строительный колледж». Конспект урока по дисциплине. «Математика». Тема: «Применение производной к ...
Применение производной для решения задач экономического содержания

Применение производной для решения задач экономического содержания

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа № 31. города Мурманска. конспект урока. «Применение ...
Применение производной к исследованию функций. Наибольшее и наименьшее значение функции

Применение производной к исследованию функций. Наибольшее и наименьшее значение функции

ГОУ «Школа здоровья и индивидуального развития». Красногвардейского района. Санкт-Петербурга. Урок алгебры и начал анализа. ...
Применение производной к построению графиков функций

Применение производной к построению графиков функций

Применение производной к построению графиков функций. Алгебра и начала анализа 11 класс. Автор: Димакова Ольга Николаевна – учитель математики ...
Производные функций и применение производной

Производные функций и применение производной

Государственное бюджетное общеобразовательное учреждение. . средняя общеобразовательная школа с. Чёрный Ключ. . муниципального района Клявлинский ...
Геометрический смысл производной. Применение производной к исследованию функций

Геометрический смысл производной. Применение производной к исследованию функций

Урок- консультация по теме «Геометрический смысл производной. Применение производной к исследованию функций». Цель урока. :. содействовать созданию ...
Применение метода интервалов для решения неравенств

Применение метода интервалов для решения неравенств

Применение метода интервалов для решения неравенств. . . 9-й класс. Цель урока:.  рассмотреть применение метода интервалов для решения неравенств ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 марта 2019
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации