- Основы теории вероятности

Презентация "Основы теории вероятности" (11 класс) по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10

Презентацию на тему "Основы теории вероятности" (11 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Правило суммы Если некоторый объект А может быть выбран из совокупности объектов М способами, а объект В N способами, то выбор либо объекта А либо объекта В может быть осуществлен М+N способами. Правило произведения Если объект А может быть выбран из совокупности объектов М способами, а после такого
Слайд 2

Правило суммы Если некоторый объект А может быть выбран из совокупности объектов М способами, а объект В N способами, то выбор либо объекта А либо объекта В может быть осуществлен М+N способами. Правило произведения Если объект А может быть выбран из совокупности объектов М способами, а после такого выбора объект В может быть выбран N способами, то пара объесков А и В могут быть выбраны А*В способами.

Основные понятия теории вероятностей. Событием называется любой исход опыта, различают следующие виды событий: - случайные - достоверные - невозможные Понятие достоверного и невозможного события используется для количественной оценки возможности появления того или иного явления, а с количественной о
Слайд 3

Основные понятия теории вероятностей

Событием называется любой исход опыта, различают следующие виды событий: - случайные - достоверные - невозможные Понятие достоверного и невозможного события используется для количественной оценки возможности появления того или иного явления, а с количественной оценкой связана вероятность.

События называется несовместными в данном опыте если появление одного из них исключает появление другого. События называется совместными если появление одного из них не исключает появление остальных. Несколько событий образуют полную группу событий если в результате опыта обязательно появится хотя б
Слайд 4

События называется несовместными в данном опыте если появление одного из них исключает появление другого. События называется совместными если появление одного из них не исключает появление остальных. Несколько событий образуют полную группу событий если в результате опыта обязательно появится хотя бы одно из них. Если два несовместных события образуют полную группу они называются противоположными

События называется равновозможными если появление ни одного из них не является объективно более возможным чем другие. События называются неравновозможными если появление хотя бы одного из них является более возможным чем другие. Случаями называются несовместные равновозможные и образующие полную гру
Слайд 5

События называется равновозможными если появление ни одного из них не является объективно более возможным чем другие. События называются неравновозможными если появление хотя бы одного из них является более возможным чем другие. Случаями называются несовместные равновозможные и образующие полную группу события.

Основы теории вероятности Суммой событий Аi и Вi называется событие С состоящее в появлении события А или события В или их обоих вместе. Суммой события А и В называется событие С заключенное в выполнении хотя бы одного из названых событий. Произведением нескольких событий называется событие заключаю
Слайд 6

Основы теории вероятности Суммой событий Аi и Вi называется событие С состоящее в появлении события А или события В или их обоих вместе. Суммой события А и В называется событие С заключенное в выполнении хотя бы одного из названых событий. Произведением нескольких событий называется событие заключающееся в совместном выполнении всех этих событий.

Теорема умножения вероятностей. Событие А называется зависимым от события В если его вероятность меняется в зависимости от того произошло событие В или нет. Вероятность появления двух зависимых событий равна произведению вероятностей одного из них на вероятность другого вычисленную при условии, что
Слайд 7

Теорема умножения вероятностей. Событие А называется зависимым от события В если его вероятность меняется в зависимости от того произошло событие В или нет. Вероятность появления двух зависимых событий равна произведению вероятностей одного из них на вероятность другого вычисленную при условии, что первое событие имело место. Р(А*В)=Р(А)*Р(В/А)=Р(В)*Р(В/А)

Вероятность произведения нескольких событий равна произведению вероятностей этих событий причем вероятность каждого следующего события вычисляется при условии, что все предыдущие имели место. Р(А1;А2.Аn)=Р(А1)*Р(А2/А1)*. *Р(Аn/А1,А2.Аn-1)
Слайд 8

Вероятность произведения нескольких событий равна произведению вероятностей этих событий причем вероятность каждого следующего события вычисляется при условии, что все предыдущие имели место. Р(А1;А2.Аn)=Р(А1)*Р(А2/А1)*. *Р(Аn/А1,А2.Аn-1)

Теорема сложения вероятностей совместных событий Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления. Р(А)+Р(В)=Р(А)+Р(В)-Р(А*В)
Слайд 9

Теорема сложения вероятностей совместных событий Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления. Р(А)+Р(В)=Р(А)+Р(В)-Р(А*В)

Вероятность появления хотя бы одного события Вероятность появления события А заключающееся в наступлении хотя бы одного из независимых совокупностей событий А1,А2,Аn равна разности между единицей и произведением вероятности противоположных событий А1,А2.Аn Р(А)=1-q1*q2*.*qn
Слайд 10

Вероятность появления хотя бы одного события Вероятность появления события А заключающееся в наступлении хотя бы одного из независимых совокупностей событий А1,А2,Аn равна разности между единицей и произведением вероятности противоположных событий А1,А2.Аn Р(А)=1-q1*q2*.*qn

Список похожих презентаций

«Основы теории вероятности»

«Основы теории вероятности»

В современном мире автоматизации производства теория вероятности(Т.В) необходима специалистам для решения задач, связанных с выявлением возможного ...
Решение комбинаторных задач и задач по теории вероятности

Решение комбинаторных задач и задач по теории вероятности

1. В урне лежат одинаковые шары : 5 белых, 3 красных и 2 зелёных. Саша вынимает один шар. Найдите вероятность того, что он окажется зелёным. Ответ: ...
Основные понятия теории вероятности

Основные понятия теории вероятности

Теория вероятностей. Введение. Основные комбинаторные объекты. Элементы теории вероятности. Задачи в которых производится подсчет всех возможных комбинаций ...
Решение задач В ЕГЭ по теории вероятности

Решение задач В ЕГЭ по теории вероятности

Основные понятия теории вероятностей. Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет. ...
История теории вероятности

История теории вероятности

Человечество всегда стремилось к некоторого рода предсказаниям. Любая наука основана на этом. Однако предвидение фактов не может быть абсолютным, ...
Вклад отечественных ученых в развитие теории вероятности

Вклад отечественных ученых в развитие теории вероятности

Теория вероятностей - раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции ...
Теория вероятности события

Теория вероятности события

Введение в комбинаторику. В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать ...
Решение задач с использованием формулы полной вероятности и формулы Бейеса

Решение задач с использованием формулы полной вероятности и формулы Бейеса

Формула полной вероятности. Формула Бейеса P(Hi|A) = =. Задачи. 1. В сборочный цех поступили детали с трех станков. На первом станке изготовлено 51% ...
Решение задач по теории вероятностей

Решение задач по теории вероятностей

С.И.Ожегов, Н.Ю.Шведова «Вероятность – возможность исполнения, осуществимости чего-нибудь». А.Н.Колмогоров «Вероятность математическая – это числовая ...
Задачи по вероятности

Задачи по вероятности

Номера задач № 1104 № 1105 № 1106 № 1107 № 1108 № 1109 № 1110 № 1111 № 1112 № 1113 № 1114 выход. В колоде 36 карт, из них наугад вынимают одну карту. ...
Основы тригонометрии

Основы тригонометрии

Этапы развития тригонометрии. Тригонометрия в древности являлась вспомогательным разделом астрономии. Древнегреческие ученые разработали «тригонометрию ...
Алгоритмы теории игр

Алгоритмы теории игр

План лекции. Введение Матричные игры Игры с седловой точкой Смешанные стратегии Применение Итоги Литература. Введение. Первая значительная книга по ...
Математическая статистика и теория вероятности

Математическая статистика и теория вероятности

Группы и специальности потоков. 92... Электроэнергетические системы и сети (100200) - 140205 93... Электроснабжение (100400) - 140211 94... Релейная ...
Комбинаторика и теория вероятности

Комбинаторика и теория вероятности

Комбинаторика. «комбинаторика» происходит от латинского слова combinare – «соединять, сочетать». Определение. Комбинаторика – это раздел математики, ...
Классическое определение вероятности

Классическое определение вероятности

Тема: Классическое определение вероятности Цель: -создать условия для осознания и осмысления блока новой учебной информации. Задачи: -Способствовать ...
Классическое определение вероятности

Классическое определение вероятности

Цель урока: Выработать умение решать задачи на определение классической вероятности с использованием основных формул комбинаторики. Оборудование: ...
Классическая теория вероятности

Классическая теория вероятности

Актуальность. Актуальность изучения данной темы заключается в том, что некоторые задачи, которые ставит перед нами реальная жизнь нельзя решить без ...
Исследование жизненных ситуаций с помощью классического определения вероятности и решение простейших задач

Исследование жизненных ситуаций с помощью классического определения вероятности и решение простейших задач

Цель – научить учащихся вычислять вероятности в задачах, описывающих жизненные ситуации Задачи : знакомство с языком теории вероятностей; рассмотрение ...
Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Содержание. Введение Пример 1. Учительница подготовила к контрольной работе… Решения: 1.а)    1.б) 1.в) 1.г) Пример 2. Известно, что х = 2аЗb5с и а, ...
Определение вероятности

Определение вероятности

При классическом определении вероятность события определяется равенством Р(А) = m/n, где m – число элементарных исходов испытания, благоприятствующих ...

Конспекты

Элементы теории вероятности и математической статистики

Элементы теории вероятности и математической статистики

Управление образования г.Астаны. ИПК и ПК СО. ГУ «Средняя школа № 36». Урок алгебры в 9 классе по теме: «Элементы теории вероятности ...
Элементы математической статистики и теории вероятности

Элементы математической статистики и теории вероятности

Тема урока:.  Элементы математической статистики и теории вероятности. Основные цели и задачи урока:.  Повторить основные понятия изучаемого предмета: ...
Элементы теории вероятности в ГИА

Элементы теории вероятности в ГИА

13 апреля 2011г. Урок алгебры в 9 классе по теме:. . «Элементы теории вероятности в ГИА». Цели:. - Научиться анализировать и решать задачи ...
Элементы комбинаторики, статистики и теории вероятности

Элементы комбинаторики, статистики и теории вероятности

Урок-соревнование. по разделу. «Решение задач по теме «Элементы комбинаторики, статистики и теории вероятности». г.Новороссийск, ...
Урок в 9 классе. Статистика, теория вероятности и их прикладное применение

Урок в 9 классе. Статистика, теория вероятности и их прикладное применение

Урок по математике в 9 классе. Статистика, теория вероятностей и их прикладное применение. . . Автор: учитель математики. МОУ СОШ№ ...
Расчёт вероятности случайного события

Расчёт вероятности случайного события

6 класс. Практическая работа № 1. «Расчёт вероятности случайного события». Цель. : научиться рассчитывать вероятность каждого исхода случайного ...
Статистика, комбинаторика и теория вероятности

Статистика, комбинаторика и теория вероятности

Урок по теме « Статистика, комбинаторика и теория вероятности». . Цель :. . - Систематизировать знания и умения по статистике, комбинаторике, ...
Расчёт вероятности случайного события

Расчёт вероятности случайного события

7 класс. Практическая работа № 1. «Расчёт вероятности случайного события». Цель. : научиться рассчитывать вероятность каждого исхода случайного ...
Понятие о вероятности

Понятие о вероятности

Конспект урока. Класс. : 5. Тема урока. : Понятие о вероятности. Цели урока. Обучающая. : познакомить учащихся с понятием вероятности, формировать ...
Понятие вероятности. Подсчёт вероятности

Понятие вероятности. Подсчёт вероятности

ПЛАН-КОНСПЕКТ УРОКА. . «Понятие вероятности. Подсчёт вероятности» Цель урока: Организация деятельности учащихся по формированию понятия вероятности, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:22 августа 2018
Категория:Математика
Классы:
Содержит:10 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации