- Комбинаторика и теория вероятности

Презентация "Комбинаторика и теория вероятности" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40

Презентацию на тему "Комбинаторика и теория вероятности" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 40 слайд(ов).

Слайды презентации

Введение в комбинаторику и теорию вероятностей. Комбинаторика Факториал Перестановки Размещения Сочетания Частота и вероятность Сложение вероятностей Умножение вероятностей
Слайд 1

Введение в комбинаторику и теорию вероятностей.

Комбинаторика Факториал Перестановки Размещения Сочетания Частота и вероятность Сложение вероятностей Умножение вероятностей

Комбинаторика. «комбинаторика» происходит от латинского слова combinare – «соединять, сочетать». Определение. Комбинаторика – это раздел математики, посвящённый задачам выбора и расположения предметов из различных множеств.
Слайд 2

Комбинаторика.

«комбинаторика» происходит от латинского слова combinare – «соединять, сочетать».

Определение. Комбинаторика – это раздел математики, посвящённый задачам выбора и расположения предметов из различных множеств.

Пример 2. Сколько трёхзначных чисел можно составить из цифр 1, 3, 5, 7, используя в записи числа каждую цифру не более одного раза? 1 5 7 дерево вариантов
Слайд 3

Пример 2. Сколько трёхзначных чисел можно составить из цифр 1, 3, 5, 7, используя в записи числа каждую цифру не более одного раза?

1 5 7 дерево вариантов

Квадратные числа
Слайд 4

Квадратные числа

Треугольные числа
Слайд 5

Треугольные числа

Прямоугольные и непрямоугольные числа.
Слайд 6

Прямоугольные и непрямоугольные числа.

Факториал. Таблица факториалов: Определение. Факториалом натурального числа n называется произведение всех натуральных чисел от 1 до n. Обозначение n!
Слайд 7

Факториал.

Таблица факториалов:

Определение. Факториалом натурального числа n называется произведение всех натуральных чисел от 1 до n. Обозначение n!

Перестановки. Определение. Перестановкой называется конечное множество, в котором установлен порядок элементов. Число всевозможных перестановок из n элементов вычисляется по формуле: Pn = n!
Слайд 8

Перестановки.

Определение. Перестановкой называется конечное множество, в котором установлен порядок элементов.

Число всевозможных перестановок из n элементов вычисляется по формуле: Pn = n!

Пример 1. Сколькими способами могут быть расставлены восемь участниц финального забега на восьми беговых дорожках? Решение: P8 = 8! = 40 320
Слайд 9

Пример 1. Сколькими способами могут быть расставлены восемь участниц финального забега на восьми беговых дорожках?

Решение: P8 = 8! = 40 320

Пример 2. Сколько различных четырёхзначных чисел можно составить из цифр 0, 1, 2, 3, причём в каждом числе цифры должны быть разные? Решение: Р4 – Р3 = 4! – 3! = 18.
Слайд 10

Пример 2. Сколько различных четырёхзначных чисел можно составить из цифр 0, 1, 2, 3, причём в каждом числе цифры должны быть разные?

Решение: Р4 – Р3 = 4! – 3! = 18.

Пример 3. Имеется 10 различных книг, среди которых есть трёхтомник одного автора. Сколькими способами можно расставить эти книги на полке, если книги трёхтомника должны находиться вместе, но в любом прядке? Решение:
Слайд 11

Пример 3. Имеется 10 различных книг, среди которых есть трёхтомник одного автора. Сколькими способами можно расставить эти книги на полке, если книги трёхтомника должны находиться вместе, но в любом прядке?

Решение:

Размещения. Определение. Размещением. из n элементов , называют. конечного множества по k, где. упорядоченное множество, состоящее из k. элементов.
Слайд 12

Размещения.

Определение. Размещением

из n элементов , называют

конечного множества по k, где

упорядоченное множество, состоящее из k

элементов.

Пример 1. Из 12 учащихся нужно отобрать по одному человеку для участия в городских олимпиадах по математике, физике, истории и географии. Каждый из учащихся участвует только в одной олимпиаде. Сколькими способами это можно сделать?
Слайд 13

Пример 1. Из 12 учащихся нужно отобрать по одному человеку для участия в городских олимпиадах по математике, физике, истории и географии. Каждый из учащихся участвует только в одной олимпиаде. Сколькими способами это можно сделать?

Пример 2. Сколько существует семизначных телефонных номеров, в которых все цифры различны и первая цифра отлична от нуля?
Слайд 14

Пример 2. Сколько существует семизначных телефонных номеров, в которых все цифры различны и первая цифра отлична от нуля?

Пример 3. Сколько существует трёхзначных чисел, составленных из цифр 1, 2, 3, 4, 5, 6 (без повторений), которые НЕ кратны 3?
Слайд 15

Пример 3. Сколько существует трёхзначных чисел, составленных из цифр 1, 2, 3, 4, 5, 6 (без повторений), которые НЕ кратны 3?

Сочетания. Определение. Подмножества, составленные из n элементов данного множества и содержащие k элементов в каждом подмножестве, называют сочетаниями из n элементов по k. (Сочетания различаются только элементами, порядок их не важен: ab и ba – это одно и тоже сочетание).
Слайд 16

Сочетания.

Определение. Подмножества, составленные из n элементов данного множества и содержащие k элементов в каждом подмножестве, называют сочетаниями из n элементов по k. (Сочетания различаются только элементами, порядок их не важен: ab и ba – это одно и тоже сочетание).

Треугольник Паскаля. 1 1 1 1	2 1 1 3 3 1 1	4	6 4 1 1 5 10 10 5	1 1 6 15 20 15 6 1 …. …
Слайд 17

Треугольник Паскаля

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 …

Комбинаторика и теория вероятности Слайд: 18
Слайд 18
Комбинаторика и теория вероятности Слайд: 19
Слайд 19
Пример 1. Сколькими способами можно выбрать трёх дежурных из класса, в котором 20 человек?
Слайд 20

Пример 1. Сколькими способами можно выбрать трёх дежурных из класса, в котором 20 человек?

Пример 2. Из вазы с цветами, в которой стоят 10 красных гвоздик и 5 белых, выбирают 2 красные гвоздики и одну белую. Сколькими способами можно сделать такой выбор букета?
Слайд 21

Пример 2. Из вазы с цветами, в которой стоят 10 красных гвоздик и 5 белых, выбирают 2 красные гвоздики и одну белую. Сколькими способами можно сделать такой выбор букета?

Пример 3. Семь огурцов и три помидора надо положить в два пакета так, чтобы в каждом пакете был хотя бы один помидор и чтобы овощей в пакетах было поровну. Сколькими способами это можно сделать?
Слайд 22

Пример 3. Семь огурцов и три помидора надо положить в два пакета так, чтобы в каждом пакете был хотя бы один помидор и чтобы овощей в пакетах было поровну. Сколькими способами это можно сделать?

Частота и вероятность. Определение. Частотой случайного события в серии испытаний называется отношение числа испытаний, в которых это событие наступило (благоприятные испытания), к числу всех испытаний. , где m – число испытаний с благоприятным исходом, n – число всех испытаний. Нахождение частоты п
Слайд 23

Частота и вероятность.

Определение. Частотой случайного события в серии испытаний называется отношение числа испытаний, в которых это событие наступило (благоприятные испытания), к числу всех испытаний.

, где m – число испытаний с благоприятным исходом, n – число всех испытаний.

Нахождение частоты предполагает, чтобы испытание было проведено фактически.

Определение. Вероятностью события А называется отношение числа благоприятных для А исходов к числу всех равновозможных исходов. Нахождение вероятности не требует, чтобы испытание проводилось в действительности.
Слайд 24

Определение. Вероятностью события А называется отношение числа благоприятных для А исходов к числу всех равновозможных исходов.

Нахождение вероятности не требует, чтобы испытание проводилось в действительности.

Пример 1. В урне 10 одинаковых шаров разного цвета: 2 красных, 3 синих, 5 жёлтых. Шары тщательно перемешаны. Наугад выбирается один шар. Какова вероятность того, что вынутый шар окажется: а) красным; б) синим; в) жёлтым? а) б) в)
Слайд 25

Пример 1. В урне 10 одинаковых шаров разного цвета: 2 красных, 3 синих, 5 жёлтых. Шары тщательно перемешаны. Наугад выбирается один шар. Какова вероятность того, что вынутый шар окажется: а) красным; б) синим; в) жёлтым?

а) б) в)

Пример 2. Коля и Миша бросают два игральных кубика. Они договорились, что если при бросании кубиков в сумме выпадет 8 очков, то выигрывает Коля, а если в сумме выпадет 7 очков, то выигрывает Миша. Справедлива ли эта игра?
Слайд 26

Пример 2. Коля и Миша бросают два игральных кубика. Они договорились, что если при бросании кубиков в сумме выпадет 8 очков, то выигрывает Коля, а если в сумме выпадет 7 очков, то выигрывает Миша. Справедлива ли эта игра?

Комбинаторика и теория вероятности Слайд: 27
Слайд 27
Пример 3. Из собранных 10 велосипедов только 7 не имеют дефектов. Какова вероятность того, что 4 выбранных велосипеда из этих 10 окажутся без дефекта?
Слайд 30

Пример 3. Из собранных 10 велосипедов только 7 не имеют дефектов. Какова вероятность того, что 4 выбранных велосипеда из этих 10 окажутся без дефекта?

Сложение вероятностей.
Слайд 31

Сложение вероятностей.

D и E называются несовместными событиями.
Слайд 32

D и E называются несовместными событиями.

Вероятность наступления хотя бы одного из двух несовместных событий равна сумме их вероятностей.
Слайд 33

Вероятность наступления хотя бы одного из двух несовместных событий равна сумме их вероятностей.

Пример 1. В урне находятся 30 шаров 10 белых, 15 красных и 5 синих. Найдите вероятность появления цветного шара.
Слайд 34

Пример 1. В урне находятся 30 шаров 10 белых, 15 красных и 5 синих. Найдите вероятность появления цветного шара.

Пример 2. В контейнере 10 деталей, из низ 2 нестандартные. Найдите вероятность того, что из 6 наугад отобранных деталей окажется не более одной нестандартной. - всего событий. Событие А – все 6 отобранных деталей стандартные, событие В – среди 6 отобранных деталей одна нестандартная.
Слайд 35

Пример 2. В контейнере 10 деталей, из низ 2 нестандартные. Найдите вероятность того, что из 6 наугад отобранных деталей окажется не более одной нестандартной.

- всего событий

Событие А – все 6 отобранных деталей стандартные, событие В – среди 6 отобранных деталей одна нестандартная.

- благоприятные события для А. - благоприятные события для В
Слайд 36

- благоприятные события для А

- благоприятные события для В

Умножение вероятностей. Вероятность совместного появления двух независимых событий равна произведению их вероятностей.
Слайд 37

Умножение вероятностей.

Вероятность совместного появления двух независимых событий равна произведению их вероятностей.

Пример 1. Монету бросают 3 раза подряд. Какова вероятность, что решка выпадет все три раза.
Слайд 38

Пример 1. Монету бросают 3 раза подряд. Какова вероятность, что решка выпадет все три раза.

Пример 2. Вероятность попадания в цель при стрельбе из первого орудия равна 0,8, а при стрельбе из второго орудия равна 0,7. Найдите вероятность хотя бы одного попадания в цель, если каждое орудие сделало по одному выстрелу. событие А – попадание в цель 1-го орудия; событие В – попадание в цель 2-го
Слайд 39

Пример 2. Вероятность попадания в цель при стрельбе из первого орудия равна 0,8, а при стрельбе из второго орудия равна 0,7. Найдите вероятность хотя бы одного попадания в цель, если каждое орудие сделало по одному выстрелу.

событие А – попадание в цель 1-го орудия; событие В – попадание в цель 2-го орудия.

событие. - промах 1-го орудия. - промах 2-го орудия. события и независимые события А и противоположные
Слайд 40

событие

- промах 1-го орудия

- промах 2-го орудия

события и независимые события А и противоположные

Список похожих презентаций

"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 октября 2018
Категория:Математика
Содержит:40 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации