- Решение комбинаторных задач и задач по теории вероятности

Презентация "Решение комбинаторных задач и задач по теории вероятности" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30

Презентацию на тему "Решение комбинаторных задач и задач по теории вероятности" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 30 слайд(ов).

Слайды презентации

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №1 г.Суздаля». Работу выполнил ученик 9 класса Рубцов Егор
Слайд 1

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №1 г.Суздаля»

Работу выполнил ученик 9 класса Рубцов Егор

1. В урне лежат одинаковые шары : 5 белых, 3 красных и 2 зелёных. Саша вынимает один шар. Найдите вероятность того, что он окажется зелёным. Ответ: 0,2 Решение: Всего в урне лежит 5+3+2=10 шаров, из них 2 – зелёных. Вероятность того, что вынутый шар окажется зелёным, равна 2:10=0,2.
Слайд 2

1.

В урне лежат одинаковые шары : 5 белых, 3 красных и 2 зелёных. Саша вынимает один шар. Найдите вероятность того, что он окажется зелёным.

Ответ: 0,2 Решение:

Всего в урне лежит 5+3+2=10 шаров, из них 2 – зелёных. Вероятность того, что вынутый шар окажется зелёным, равна 2:10=0,2.

2. На тарелке лежат одинаковые на вид блинчики: 3 с творогом, 5 с мясом и 4 с икрой и яйцами. Лена наугад выбирает один блинчик. Найдите вероятность того, что он окажется с творогом. Ответ: 0,25. Всего в тарелке лежит 3+5+4=12 блинчиков, из них 3 – с творогом. Вероятность того, что выбранный блинчик
Слайд 3

2.

На тарелке лежат одинаковые на вид блинчики: 3 с творогом, 5 с мясом и 4 с икрой и яйцами. Лена наугад выбирает один блинчик. Найдите вероятность того, что он окажется с творогом.

Ответ: 0,25

Всего в тарелке лежит 3+5+4=12 блинчиков, из них 3 – с творогом. Вероятность того, что выбранный блинчик окажется с творогом, равна 3/12=1/4=0,25.

3. В копилке находятся монеты достоинством 2 рубля – 14 штук, 5 рублей – 10 штук и 10 рублей – 6 штук. Какова вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей? Всего в копилке 14+10+6=30 монет, из них 6 штук – десятирублевых. Вероятность того, что первая монета,
Слайд 4

3.

В копилке находятся монеты достоинством 2 рубля – 14 штук, 5 рублей – 10 штук и 10 рублей – 6 штук. Какова вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей?

Всего в копилке 14+10+6=30 монет, из них 6 штук – десятирублевых. Вероятность того, что первая монета, выпавшая из копилки, будет достоинством 10 рублей, равна 6:30=1:5=0,2.

4. В коробке находятся 7 красных шаров, 13 белых шаров и 6 голубых шаров. Определите вероятность того, что наудачу взятый из коробки шар окажется белым. Ответ: 0,5. Всего в коробке 7+13+6=26 шаров, из них13 – белых. Вероятность того, что наудачу взятый из коробки шар окажется белым, равна 13:26=1:2=
Слайд 5

4.

В коробке находятся 7 красных шаров, 13 белых шаров и 6 голубых шаров. Определите вероятность того, что наудачу взятый из коробки шар окажется белым.

Ответ: 0,5

Всего в коробке 7+13+6=26 шаров, из них13 – белых. Вероятность того, что наудачу взятый из коробки шар окажется белым, равна 13:26=1:2=0,5.

5. Подбрасывают три монеты. Какова вероятность того, что все монеты упадут орлом вверх? Рассмотрим полную группу событий. ♦ первая монета упала орлом (о), вторая — решкой (р); ♦ обе монеты упали орлом; ♦ первая монета упала решкой, вторая — орлом; ♦ обе монеты упали решкой. Мы перечислили все возмож
Слайд 6

5.

Подбрасывают три монеты. Какова вероятность того, что все монеты упадут орлом вверх?

Рассмотрим полную группу событий. ♦ первая монета упала орлом (о), вторая — решкой (р); ♦ обе монеты упали орлом; ♦ первая монета упала решкой, вторая — орлом; ♦ обе монеты упали решкой. Мы перечислили все возможные исходы опыта, их всего – 4. Нас интересуют те исходы опыта, когда обе монеты упали орлом. Такой случай всего один. Стало быть, N = 1. Итак, вероятность выпадения двух орлов: Р = 1/4.

6. Подбрасывают три монеты. Какова вероятность того, что ровно одна монета упадёт орлом вверх? Рассмотрим полную группу событий. ♦ первая монета упала орлом (о), вторая — решкой (р); ♦ обе монеты упали орлом; ♦ первая монета упала решкой, вторая — орлом; ♦ обе монеты упали решкой. Мы перечислили все
Слайд 7

6.

Подбрасывают три монеты. Какова вероятность того, что ровно одна монета упадёт орлом вверх?

Рассмотрим полную группу событий. ♦ первая монета упала орлом (о), вторая — решкой (р); ♦ обе монеты упали орлом; ♦ первая монета упала решкой, вторая — орлом; ♦ обе монеты упали решкой. Мы перечислили все возможные исходы опыта, их всего – 4. Нас интересуют те исходы опыта, когда одна их монет упала орлом. Вверх. Таких случаев два. Стало быть, N = 2. Итак, вероятность выпадения «орла»: Р = 2/4=1/2

7. На полке стоят одинаковые на вид бутылки с прозрачной жидкостью: 4 бутылки с этиловым спиртом, 6 – с солевым раствором и 5 – с перекисью водорода. Василий наугад берёт с полки одну из бутылок. Найдите вероятность того, что с выбранной бутылке окажется солевой раствор. Ответ: 0,4. Всего на полке 4
Слайд 8

7.

На полке стоят одинаковые на вид бутылки с прозрачной жидкостью: 4 бутылки с этиловым спиртом, 6 – с солевым раствором и 5 – с перекисью водорода. Василий наугад берёт с полки одну из бутылок. Найдите вероятность того, что с выбранной бутылке окажется солевой раствор.

Ответ: 0,4

Всего на полке 4+6+5=15 бутылок с различными жидкостями, из них 6 – с солевым раствором. Вероятность того, что с выбранной бутылке окажется солевой раствор, равна 6:15=2:5=0,4.

8. В пенале лежат несколько неотличающихся внешне друг от друга простых карандашей: 8 твёрдых, 12 мягких и 5 твёрдо-мягких. Марина наудачу выбирает один карандаш из пенала. Определите вероятность того, что выбранный карандаш будет твёрдым. Ответ: 0,32. Всего в пенале 8+12+5=25 карандашей, из них 8 –
Слайд 9

8.

В пенале лежат несколько неотличающихся внешне друг от друга простых карандашей: 8 твёрдых, 12 мягких и 5 твёрдо-мягких. Марина наудачу выбирает один карандаш из пенала. Определите вероятность того, что выбранный карандаш будет твёрдым.

Ответ: 0,32

Всего в пенале 8+12+5=25 карандашей, из них 8 – твёрдых. Вероятность того, что выбранный карандаш будет твёрдым, равна 8:25=0,32.

9. Паша наудачу выбирает двузначное число. Найдите вероятность того, что оно оканчивается на 7. Ответ: 0,1. Всего двузначных чисел – 90. Двузначных чисел, оканчивающихся на 7: 17,27,37,47,57,67,77,87,97 – 9 чисел. Вероятность того, что наугад выбранное двузначное число оканчивается на 7, равна: 9:90
Слайд 10

9.

Паша наудачу выбирает двузначное число. Найдите вероятность того, что оно оканчивается на 7.

Ответ: 0,1

Всего двузначных чисел – 90. Двузначных чисел, оканчивающихся на 7: 17,27,37,47,57,67,77,87,97 – 9 чисел. Вероятность того, что наугад выбранное двузначное число оканчивается на 7, равна: 9:90=0,1

10. На экзамене 45 билетов, Антон не успел выучить 18 из них. Найдите вероятность того, что ему попадётся выученный билет, если билет берётся наудачу. Ответ: 0,6. Всего 45 билетов. Антон выучил 45-18=27 билетов. Вероятность того, что ему попадётся выученный билет, 27:45=0,6 равна
Слайд 11

10.

На экзамене 45 билетов, Антон не успел выучить 18 из них. Найдите вероятность того, что ему попадётся выученный билет, если билет берётся наудачу.

Ответ: 0,6

Всего 45 билетов. Антон выучил 45-18=27 билетов. Вероятность того, что ему попадётся выученный билет, 27:45=0,6 равна

11. В конкурсе «Мисс мира» участвуют 100 девушек из разных стран, среди них 48 блондинок. Какова вероятность того, что первой красавицей будет блондинка? Ответ: 0,48. Всего в конкурсе участвуют 100 девушек, из них 48-блондинок. Вероятность того, что первой красавицей будет блондинка, равна 48:100=0,
Слайд 12

11.

В конкурсе «Мисс мира» участвуют 100 девушек из разных стран, среди них 48 блондинок. Какова вероятность того, что первой красавицей будет блондинка?

Ответ: 0,48

Всего в конкурсе участвуют 100 девушек, из них 48-блондинок. Вероятность того, что первой красавицей будет блондинка, равна 48:100=0,48.

12. В полуфинале Кубка России играют четыре команды в матчах: «Спартак»(Москва) – ЦСКА(Москва), «Ростов»(Ростов-на-Дону) – «Алания»(Владикавказ). Какова вероятность для команды ЦСКА(Москва) выиграть Кубок России, если команды имеют равные шансы на победу?
Слайд 13

12.

В полуфинале Кубка России играют четыре команды в матчах: «Спартак»(Москва) – ЦСКА(Москва), «Ростов»(Ростов-на-Дону) – «Алания»(Владикавказ). Какова вероятность для команды ЦСКА(Москва) выиграть Кубок России, если команды имеют равные шансы на победу?

13. В шкафу стоят непрозрачные бутылки без надписей: 4 с соком, 3 с водой и 5 с лимонадом. Найдите вероятность того, что наугад взятая из шкафа бутылка будет с лимонадом. Ответ: 5/12. Всего в шкафу 4+3+5=12 бутылок в жидкостью. 5 бутылок с лимонадом. Значит, вероятность того, что наугад взятая из шк
Слайд 14

13.

В шкафу стоят непрозрачные бутылки без надписей: 4 с соком, 3 с водой и 5 с лимонадом. Найдите вероятность того, что наугад взятая из шкафа бутылка будет с лимонадом.

Ответ: 5/12

Всего в шкафу 4+3+5=12 бутылок в жидкостью. 5 бутылок с лимонадом. Значит, вероятность того, что наугад взятая из шкафа бутылка будет с лимонадом равна 5:12.

14. На тарелке лежат одинаковые на вид пирожки:5 с мясом, 7 с картошкой и 11 с повидлом. Найдите вероятность того, что наугад взятый пирожок окажется с картошкой. Ответ: 7/23. Всего на тарелке 5+7+11=23 пирожков с различными начинками. 7 пирожков с картошкой. Значит, вероятность того, что наугад взя
Слайд 15

14.

На тарелке лежат одинаковые на вид пирожки:5 с мясом, 7 с картошкой и 11 с повидлом. Найдите вероятность того, что наугад взятый пирожок окажется с картошкой.

Ответ: 7/23

Всего на тарелке 5+7+11=23 пирожков с различными начинками. 7 пирожков с картошкой. Значит, вероятность того, что наугад взятый с тарелки пирожок будет с картошкой, равна 7:23.

15. При производстве 1200 электроприборов для машин марки «Лада» только 6 оказалось бракованными. Какова вероятность того, что на машину будет установлен бракованный электроприбор? Ответ: 1/200. Всего 1200 электроприборов. 6 – бракованных. Значит, вероятность того, что на машину будет установлен бра
Слайд 16

15.

При производстве 1200 электроприборов для машин марки «Лада» только 6 оказалось бракованными. Какова вероятность того, что на машину будет установлен бракованный электроприбор?

Ответ: 1/200

Всего 1200 электроприборов. 6 – бракованных. Значит, вероятность того, что на машину будет установлен бракованный электроприбор, равна 6:1200=1:200.

16. В мешке находятся 3 белых, 4 чёрных и 5 синих шариков. Наугад вынимается один шарик. Какова вероятность вынуть чёрный шарик? Ответ: 1/3. Всего в мешке 3+4+5=12 шариков, 4 из которых – чёрные. Вероятность вынуть чёрный шарик равна 4:12=1:3.
Слайд 17

16.

В мешке находятся 3 белых, 4 чёрных и 5 синих шариков. Наугад вынимается один шарик. Какова вероятность вынуть чёрный шарик?

Ответ: 1/3

Всего в мешке 3+4+5=12 шариков, 4 из которых – чёрные. Вероятность вынуть чёрный шарик равна 4:12=1:3.

17. На полке стоят книги: пять детективов, семь романов и три сборника стихов. Определите вероятность того, что наугад взятая книга окажется сборником стихов. Всего на полке 5+7+3=15 книг, из них 3 - сборника стихов. Вероятность того, что наугад взятая книга окажется сборником стихов, равна 3:15=1:5
Слайд 18

17.

На полке стоят книги: пять детективов, семь романов и три сборника стихов. Определите вероятность того, что наугад взятая книга окажется сборником стихов.

Всего на полке 5+7+3=15 книг, из них 3 - сборника стихов. Вероятность того, что наугад взятая книга окажется сборником стихов, равна 3:15=1:5=0,2

18. В лотерее участвуют 40 тысяч жителей Москвы, 50 тысяч жителей Санкт-Петербурга и 30 тысяч жителей Волгограда. Один из участников выиграл суперприз. Определите вероятность того, что он живёт в Москве. Всего в лотерее приняло участие 40+50+30=120 тысяч жителей, из них 40 тысяч – москвичей. Вероятн
Слайд 19

18.

В лотерее участвуют 40 тысяч жителей Москвы, 50 тысяч жителей Санкт-Петербурга и 30 тысяч жителей Волгограда. Один из участников выиграл суперприз. Определите вероятность того, что он живёт в Москве.

Всего в лотерее приняло участие 40+50+30=120 тысяч жителей, из них 40 тысяч – москвичей. Вероятность того, что москвич выиграл суперприз равна 40:120=1:3.

19. В соревнованиях по фигурному катанию участвуют пять пар из России, три пары из Канады, четыре из США и три из Китая. Найдите вероятность того, что первой парой будет выступать пара из Канады, если порядок выступлений определяется жеребьёвкой. Всего в фигурном катании принимают участие 5+3+4+3=15
Слайд 20

19.

В соревнованиях по фигурному катанию участвуют пять пар из России, три пары из Канады, четыре из США и три из Китая. Найдите вероятность того, что первой парой будет выступать пара из Канады, если порядок выступлений определяется жеребьёвкой.

Всего в фигурном катании принимают участие 5+3+4+3=15 пар, из них - 3 пары из Канады. Вероятность того, что первой парой будет выступать пара из Канады, если порядок выступлений определяется жеребьёвкой, равна 3:15=0,2

20. На столе лежат 7 синих, 3 красных и 5 зелёных ручек. Найдите вероятность того, что наугад взятая ручка окажется красной. Всего на столе 7+3+5=15 ручек, из 3 – красных. Вероятность того, что наугад взятая ручка окажется красной, равна 3:15=0,2.
Слайд 21

20.

На столе лежат 7 синих, 3 красных и 5 зелёных ручек. Найдите вероятность того, что наугад взятая ручка окажется красной.

Всего на столе 7+3+5=15 ручек, из 3 – красных. Вероятность того, что наугад взятая ручка окажется красной, равна 3:15=0,2.

21. В классе 30 человек. Для участия в субботнике случайным образом выбирают 12 учеников. Какова вероятность быть выбранным для участия в субботнике? Всего в классе 30 человек, в субботнике принимают участие – 12. Вероятность быть выбранным для участия в субботнике равна 12:30=4:10=2:5=0,4.
Слайд 22

21.

В классе 30 человек. Для участия в субботнике случайным образом выбирают 12 учеников. Какова вероятность быть выбранным для участия в субботнике?

Всего в классе 30 человек, в субботнике принимают участие – 12. Вероятность быть выбранным для участия в субботнике равна 12:30=4:10=2:5=0,4.

22. В тестовом задании пять вариантов ответа, из которых только один верный. Какова вероятность правильно решить задание, если выбирать вариант наугад? Если в тестовом задании только один из пяти ответов верный, то вероятность правильно решить задание , если выбирать вариант наугад, равна 1:5=0,2.
Слайд 23

22.

В тестовом задании пять вариантов ответа, из которых только один верный. Какова вероятность правильно решить задание, если выбирать вариант наугад?

Если в тестовом задании только один из пяти ответов верный, то вероятность правильно решить задание , если выбирать вариант наугад, равна 1:5=0,2.

23. В мешке находятся 2 чёрных и 3 белых шара. Наугад вытаскивают два шара. Какова вероятность того, что вытащенные шары будут одного цвета? Всего в мешке 5 шаров. Вероятность того, что вытащенные два шара будут одного цвета, равна 2:5=0,4.
Слайд 24

23.

В мешке находятся 2 чёрных и 3 белых шара. Наугад вытаскивают два шара. Какова вероятность того, что вытащенные шары будут одного цвета?

Всего в мешке 5 шаров. Вероятность того, что вытащенные два шара будут одного цвета, равна 2:5=0,4.

24. В пакете с леденцами 3 леденца с апельсиновым вкусом, 4 с лимонным и 5 с малиновым. Какова вероятность наудачу вытащить леденец с апельсиновым вкусом? Всего в пакете 3+4+5 =12 леденцов, из них 3 – с апельсиновым вкусом. Вероятность наудачу вытащить леденец с апельсиновым вкусом равна 3:12=1:4=0,
Слайд 25

24.

В пакете с леденцами 3 леденца с апельсиновым вкусом, 4 с лимонным и 5 с малиновым. Какова вероятность наудачу вытащить леденец с апельсиновым вкусом?

Всего в пакете 3+4+5 =12 леденцов, из них 3 – с апельсиновым вкусом. Вероятность наудачу вытащить леденец с апельсиновым вкусом равна 3:12=1:4=0,25.

25. В заключительном этапе велосипедной гонки участвуют равные по профессиональной квалификации спортсмены: 5 велосипедистов общества «Динамо», 4 велосипедиста общества «Буревестник», 6 велосипедистов общества «Зенит». Найдите вероятность того, что первым финиширует спортсмен общества «Зенит». Всего
Слайд 26

25.

В заключительном этапе велосипедной гонки участвуют равные по профессиональной квалификации спортсмены: 5 велосипедистов общества «Динамо», 4 велосипедиста общества «Буревестник», 6 велосипедистов общества «Зенит». Найдите вероятность того, что первым финиширует спортсмен общества «Зенит».

Всего в велосипедной гонке участвуют 5+4+6=15 спортсменов. Из них 6 – велосипедистов общества «Зенит». Вероятность того, что первым финиширует спортсмен общества «Зенит», равна 6:15=2:5=0,4

26. В корзине лежат 7 помидоров, 6 огурцов, 12 перцев. Найдите вероятность того, что первый наугад взятый овощ из корзины будет перцем. Всего в корзине 7+6+12=25 различных овощей, из них 12 – перцев. Вероятность того, что первый наугад взятый овощ из корзины будет перцем, равна 12:25=0,48.
Слайд 27

26.

В корзине лежат 7 помидоров, 6 огурцов, 12 перцев. Найдите вероятность того, что первый наугад взятый овощ из корзины будет перцем.

Всего в корзине 7+6+12=25 различных овощей, из них 12 – перцев. Вероятность того, что первый наугад взятый овощ из корзины будет перцем, равна 12:25=0,48.

27. Из города А в город В можно добраться четырьмя разными способами, а из города В в город С можно добраться тремя способами. Сколькими способами можно добраться из города А в город С через город В? Ответ: 12. По правилу произведения получаем, что добраться из города А в город С через город В можно
Слайд 28

27.

Из города А в город В можно добраться четырьмя разными способами, а из города В в город С можно добраться тремя способами. Сколькими способами можно добраться из города А в город С через город В?

Ответ: 12

По правилу произведения получаем, что добраться из города А в город С через город В можно 4∙3=12 способами.

А В С

28. Из города А в город В можно добраться поездом, самолётом и на автомобиле. Из города В в город С можно добраться только поездом и самолётом. Пассажир выбирает для себя транспорт случайным образом. Какова вероятность того, что этот пассажир, добравшийся из города А в город В, воспользовался в обои
Слайд 29

28.

Из города А в город В можно добраться поездом, самолётом и на автомобиле. Из города В в город С можно добраться только поездом и самолётом. Пассажир выбирает для себя транспорт случайным образом. Какова вероятность того, что этот пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом?

Ответ: 1/6

По правилу произведения получаем, что добраться из города А в город С через город В можно 3∙2=6 способами. Вероятность того, что пассажир, добравшийся из города А в город В, воспользовался в обоих случаях самолётом, равна 1:6

Список похожих презентаций

«Решение задач по математике»

«Решение задач по математике»

10 февраля. В классе. Задача условие вопрос решение ответ. Быстро и правильно считать. Правильно записывать решение задачи. Кричать и сердиться, когда ...
«Решение задач с помощью пропорций»

«Решение задач с помощью пропорций»

Найти значение Х: Х:3=4:6 5:Х=2:6 7:3=Х:18 Устная работа. Указать вид пропорциональной зависимости:. Какова зависимость пути от времени? Какова зависимость ...
«Олимпийский» задачник по математике

«Олимпийский» задачник по математике

Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи — решайте их Д. Пойа. Если мы действительно что-то ...
Аксиомы стереометрии Решение задач

Аксиомы стереометрии Решение задач

Через любые две точки пространства проходит единственная прямая. Через любые три точки пространства, не принадлежащие одной прямой, проходит единственная ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Задачи по математике»

«Задачи по математике»

Успех каждого – это шаг к успеху всего класса. Реши примеры 5 ·8 5·5 4·6 8·8 25-5 36-6. 48-8 99-9 6·10 50·10 4·10 7·100. =40 =25 =24 =64 =20 =90 =60 ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
«Основы теории вероятности»

«Основы теории вероятности»

В современном мире автоматизации производства теория вероятности(Т.В) необходима специалистам для решения задач, связанных с выявлением возможного ...
«Решение задания С1 ЕГЭ по информатике и ИКТ»

«Решение задания С1 ЕГЭ по информатике и ИКТ»

2 балла. Решение задания С1 ЕГЭ по информатике и ИКТ.  Кунина В.В. область I  область II. 0 x y y = x+2 y2 + x2 = 25 y2 + x2  25 y  0 x  0 область ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
Активные и Смелые, Артисты и Спортсмены, Аккуратные и Старательные, Артистичные и Симпатичные, Одним словом, наш класс- ПЯТЫЙ АС!

Активные и Смелые, Артисты и Спортсмены, Аккуратные и Старательные, Артистичные и Симпатичные, Одним словом, наш класс- ПЯТЫЙ АС!

Наш класс весёлый и смешной, Красивый он и смелый. Там есть артисты и певцы, Танцоры и спортсмены. И там улыбка каждый день, И солнце в окна светит, ...
2 класс Тренажер по математике

2 класс Тренажер по математике

Выбери героя, нажав на него, с кем хочешь проверить свои знания! 7 + 7 18 12 14. 7 + 9 16 15. 7 + 4 11. 7 + 8 17. 7 + 6 13. 10 + 6. 10 + 8 10. 10 ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
Авторалли по городам математики

Авторалли по городам математики

Цель: Закрепить навык выполнения действий, возведения чисел в квадрат и куб, закрепить формулы пути и площади. Расширение кругозора учащихся, развитие ...
Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
8 класс "Решение квадратных уравнений"

8 класс "Решение квадратных уравнений"

. . . . . . «Уравнение – это золотой ключ, открывающий все математические тайны». . Цель: привести в систему знания о квадратных уравнениях и умение ...
«Лабораторные работы по геометрии»

«Лабораторные работы по геометрии»

Вписанная и описанная окружности. Цель работы: Проверить при построении в любой ли треугольник можно вписать окружность и вокруг любого ли треугольника ...
«Уравнения по математике»

«Уравнения по математике»

17.10.12. Классная работа. Тема: «Уравнения». Решение уравнений. Математические фокусы. Составление равенств. «Секретная» сказка. «Математику нельзя ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Алгоритм решения задачи на нахождение целого и частей

Алгоритм решения задачи на нахождение целого и частей

. Тимошенкова. Ирина Викторовна. Учитель начальных классов. МБ НОУ «Гимназия № 70». Г. Новокузнецк. Алгоритм. решения задачи. ...
Арифметические действия с положительными и отрицательными числами

Арифметические действия с положительными и отрицательными числами

. Муниципальное бюджетное общеобразовательное учреждение«Лицей №2». Методическая разработка урокаматематики. «Арифметические действия ...
Веселая и полезная математика

Веселая и полезная математика

. Тюрина Валентина Викторовна. 1 квалификационная категория – учитель математики. Город Прокопьевск Кемеровская область. МКОУ «Школа – интернат ...
Арксинус. Решение уравнения sin t =a

Арксинус. Решение уравнения sin t =a

Муниципальное общеобразовательное учреждение. «Гимназия №87» города Саратова. Методическая разработка. . урока по теме. . «Арксинус. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...
В гостях у Геометрии. Внутри и снаружи

В гостях у Геометрии. Внутри и снаружи

. Муниципальное бюджетное образовательное учреждение. «Черемшанская средняя общеобразовательная школа № 1». Черемшанского муниципального района ...
Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Арифметический квадратный корень из произведения, степени и дроби

Арифметический квадратный корень из произведения, степени и дроби

Тема: «Арифметический квадратный корень из произведения, степени и дроби». Цели урока:. . Образовательные:. изучить основные свойства квадратных ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:ученик Рубцов Егор
Содержит:30 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации