- Арксинус. Решение уравнения sin t =a

Конспект урока «Арксинус. Решение уравнения sin t =a» по алгебре для 10 класса


Муниципальное общеобразовательное учреждение

«Гимназия №87» города Саратова





Методическая разработка

урока по теме


«Арксинус.

Решение уравнения sin t =a»


10 класс




Автор: Дроздова Алла Владимировна,

учитель математики

высшей квалификационной категории










Саратов 2010


Предмет: математика.


Учебный план: 4 часа в неделю.


Класс: 10.


Урок рассчитан на 45 минут.


Тип урока: изучение нового материала.


Цели урока:


  • дидактические: сформировать у учащихся понятие арксинуса; вывести общую формулу решения уравнения sin t = a; выработать алгоритм решения данного уравнения;

  • развивающие: развитие познавательного интереса, логического мышления, интеллектуальных способностей; формирование математической речи;

  • воспитательные: формировать эстетические навыки при оформлении записей в тетради и самостоятельность мышления у учащихся.


Оборудование: компьютер, мультимедийный проектор, экран, презентация «Арксинус. Решение уравнения sin t =a».


Ход урока.


Этапы урока и их содержание

Время (мин)

Деятельность

учителя

учащегося

I

Организационный этап.

1

Организационная.

Сообщают об отсутствующих.


II

Постановка целей.

Сегодня на уроке мы введем понятие арксинуса; выведем общую формулу решения уравнения sin t = a; выработаем алгоритм решения данного уравнения.


1

Сообщает тему урока, дату проведения урока, цель урока.

Открыли рабочие тетради и записали тему урока.


III

Домашнее задание.

Изучить теоретический материал.

Практическая часть (даётся задание в соответствии с используемым учебным пособием).


1

Комментирует домашнее задание.

Получают задание.

IX

Актуализация опорных знаний (устная работа).

Повторить способ решения уравнения вида

sin t = a, где а – действительное число, с помощью числовой окружности.

Решить уравнения: sin t = .

Используем геометрическую модель – числовую окружность на координатной плоскости.

sin t = ;






5















Показывает презентацию.




Слайд №2


Слайд №3

Задает вопросы.











Отвечают на вопросы.




V

Изучение нового материала.

Ввести проблемную ситуацию: любое ли тригонометрическое уравнение вида

sint = a можно решить с помощью числовой окружности?

1) Предложить учащимся решить уравнение

sin t = .

С помощью числовой окружности получим

t1 и t2.

Когда впервые возникла ситуация с решение уравнений такого типа, ученым-математикам пришлось придумать способ её описания на математическом языке. В рассмотрение был введен новый символ

arcsin а.

Читается: арксинус а; «arcus» в переводе с латинского значит «дуга» (сравните со словом «арка»). С помощью этого символа числа t1 и t2 записываются следующим образом:

t1 = arcsin , t2 = arcsin .

Теперь с помощью этого символа корни уравнения sin t = можно записать так:

Предложить учащимся обобщить полученные знания, ответив на вопрос: «Что же означает arcsin

Вывод: это число (длина дуги), синус которого равен и которое принадлежит первой четверти числовой окружности.

2) Решить уравнение sin t = – .

С помощью числовой окружности и символа arcsin а получим:

Предложить учащимся обобщить полученные знания, ответив на вопрос: «Что же означает arcsin () ?»

Вывод: это число (длина дуги), синус которого равен и которое принадлежит четвёртой четверти числовой окружности.



3) Сформулировать определение арксинуса в общем виде.


4) Рассмотреть примеры на вычисление арксинуса.

Пример 1. Вычислите arcsin.

Решение.

Пусть

Значит, поскольку и Итак, arcsin=

Пример 2. Вычислите arcsin.




Пример 3. Вычислите arcsin 0.



5) Доказать теорему и рассмотреть её применение на практике.

Теорема.

Для любого а [-1;1] выполняется равенство arcsin a + arcsin (-a) =0.

Применение теоремы.

На практике используется:

arcsin (-a) = - arcsin a , где 0 ≤ а ≤ 1.

Пример.

arcsin= - arcsin = -

6) Сделать общий вывод о решении уравнения sin t = a .

Если │a│≤ 1, то уравнение sint = a имеет решения: .

7) Рассмотреть частные случи.

Выделим формулы для решения следующих уравнений: sin t = 0, sin t =1 , sin t = –1.

26






Слайд №4

Формулирует задание, показывает решение обсуждая каждое действие с учащимися.




Слайд №5






Слайд №6









Слайд №7

Формулирует вопрос.







Слайд №8

Показывает решение уравнения обсуждая каждое действие с учащимися.


Слайд №9

Формулирует вопрос.







Слайд №10




Слайд №11

Показывает решение обсуждая каждое действие с учащимися.








Слайд №12

Показывает решение


Слайд №13

Показывает решение.


Слайд №14

Доказывает теорему.



Слайд №15

Показывает применение теоремы на практике.



Слайд №16-17





Слайд №18



Отвечают на вопрос.



Работают в форме диалога с учителем, оформляют решение в тетради












Выполняют записи в тетради.







Записывают определение.








Работают в форме диалога с учителем, оформляют решение в тетради.



Записывают определение.








Записывают определение.



Работают в форме диалога с учителем, оформляют решение в тетради.








Один из учеников комментирует решение, остальные проверяют своё решение.


Выполняют записи в тетради.



Выполняют записи в тетради.





Выполняют записи в тетради.



Выполняют записи в тетради.


VI

Обобщение изученного материала.

Составим алгоритм решения простейшего тригонометрического уравнения вида sin t = a:

  • составить общую формулу;

  • вычислить значение arcsin a;

  • подставить найденное значение в общую формулу.



Пример 1. Решить уравнение sin t = .

Пример 2. Решить уравнение sin t = .

Пример 3. Решить уравнение sin t = .

Пример 4. Решить уравнение sin t = - 1,2.


10






Показывает решение уравнений на примерах.


Слайд №19



Слайд №20-21

Слайд №22


Слайд №23











Работают в форме диалога с учителем, оформляют решение в тетради.


VII

Итоги урока.

Итак, сегодня на уроке мы ввели понятие арксинуса; вывели общую формулу решения уравнения sin t = a и выработали алгоритм решения данного уравнения.

Спасибо за урок!

1

Слайд №24





Список использованной литературы


  1. Мордкович А.Г. Алгебра и начала анализа 10-11. Часть 1. Учебник. М: Мнемозина, 2007.

  2. Мордкович А.Г. и др. Алгебра и начала анализа, 10-11. Часть 2. Задачник. М: Мнемозина, 2007.

  3. Мордкович А.Г., Смирнова И.М. Математика-10 (для гуманитарных классов).

  4. Звавич Л.И., Рязановский А.Р. Алгебра в таблицах 7-11 классы. Справочное пособие. М: Дрофа, 2001.

Здесь представлен конспект к уроку на тему «Арксинус. Решение уравнения sin t =a», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра (10 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Тема:. «Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений». Тип урока:. урок изучения нового материала. Цели урока:. ...
Решение систем уравнения способом подстановки и алгебраического сложения

Решение систем уравнения способом подстановки и алгебраического сложения

Конспект коррекционно-развивающего урока алгебры в 7 классе. Тип урока:. закрепление знаний и умений. Базовый учебник:. Ш. А. Алимов Алгебра ...
Итоговое повторение. Решение заданий по теме « Уравнения

Итоговое повторение. Решение заданий по теме « Уравнения

Урок по теме. « Итоговое повторение. Решение заданий по теме « Уравнения»». Учитель :. Петрученя Н. В.,. учитель математики. МБОУ «Засосенская ...
Решение сложных иррациональных уравнений и систем, содержащих иррациональные уравнения

Решение сложных иррациональных уравнений и систем, содержащих иррациональные уравнения

Болявина Наталья Сергеевна. Учитель математики. ГБОУ СОШ № 756 г. Москвы. Разработка урока по алгебре и началам анализа в 11 классе. ...
Решение примеров на свойства квадратных корней

Решение примеров на свойства квадратных корней

Дата:. 9. /. 1. 0/2014. Класс 8. Урок №. 17. Предмет:. алгебра. Тема урока:. . Решение примеров на свойства кв. а. дратных корней. Цель урока:. ...
Решение систем двух уравнений с двумя неизвестными способом подстановки

Решение систем двух уравнений с двумя неизвестными способом подстановки

Бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 108». г. Омска. КОНСПЕКТ. . КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННОГО ...
Дробные рациональные уравнения

Дробные рациональные уравнения

Урок по алгебре в 9 классе. Тема урока:. Дробные рациональные уравнения. Цели урока:. 1) Организовать деятельность учащихся, способствующую формированию ...
Решение показательных уравнений

Решение показательных уравнений

Урок по теме: «Решение показательных уравнений» для 10-11 классов. Разработала: преподаватель математики Бикирова Наиля Абдрашитовна. . ГБОУ СПО ...
Решение квадратных уравнений

Решение квадратных уравнений

КГУ «Первомайский комплекс «Общеобразовательная средняя школа-детский сад имени Д. М. Карбышева» отдела образования Шемонаихинского района». ...
Решение линейных уравнений

Решение линейных уравнений

«. №9 орта мектеп» ММ. ГУ «Средняя школа №9». . Открытый урок по математике в 6 классе по теме:. «Решение линейных уравнений». на городском ...
Решение уравнений

Решение уравнений

МОУ гимназия №1 г.Липецка. Близнецова Галина Дмитриевна. Алгебра 8А класс, физико-математический. Программно-методическое обеспечение:. . ...
Иррациональные уравнения

Иррациональные уравнения

Муниципальное казенное общеобразовательное учреждение. Великоархангельская средняя общеобразовательная школа. Конспект урока для 11 класса. ...
Иррациональные уравнения

Иррациональные уравнения

Муниципальное бюджетное общеобразовательное учреждение. Пролетарская средняя общеобразовательная школа №6 г. Пролетарска Пролетарского района Ростовской ...
Иррациональные уравнения

Иррациональные уравнения

План – конспект урока. Обобщающий урок алгебры в 11 классе по теме:. «Иррациональные уравнения». Цель:. Обобщить знания по теме: «Иррациональные ...
Иррациональные уравнения

Иррациональные уравнения

Урок по теме «Иррациональные уравнения». «Да, мир познания не гладок. И знаем мы со школьных лет. Загадок больше, чем разгадок. И поискам ...
Иррациональные уравнения

Иррациональные уравнения

Класс: 11. Предмет: математика. Тема урока:. Иррациональные уравнения. Цели урока:. . 1. . Ввести понятие иррациональных уравнений и показать ...
Иррациональные уравнения

Иррациональные уравнения

Урок алгебры в 8 классе. Учитель: Габдукаева Физалия Каримовна. Тема урока: «Иррациональные уравнения». Цели:. Формирование навыков решения ...
Решение систем уравнений

Решение систем уравнений

Тема: «Решение систем уравнений» 9 класс. Цели:. . образовательная:. оперирование основными понятиями, входящими в изучаемую тему; закрепление ...
Решение квадратных уравнений

Решение квадратных уравнений

Захарова Е. А. . Конспект-сценарий урока. Тема:. Решение квадратных уравнений (частные случаи). Цель:. . . - деятельностная: формирование ...
Квадратные уравнения

Квадратные уравнения

Обобщающий урок по теме «Квадратные уравнения» с использованием игровых технологий. Цели урока:. обобщить и систематизировать знания и умения ...