- Графический метод решения ЗЛП

Презентация "Графический метод решения ЗЛП" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29

Презентацию на тему "Графический метод решения ЗЛП" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 29 слайд(ов).

Слайды презентации

Графический метод решения ЗЛП. Лекция 5
Слайд 1

Графический метод решения ЗЛП

Лекция 5

Рассмотрим ЗЛП на плоскости. при ограничениях
Слайд 2

Рассмотрим ЗЛП на плоскости. при ограничениях

Каждое неравенство системы ограничений геометрически определяет полуплоскость с граничными прямыми Условия неотрицательности определяют полуплоскости с граничными прямыми Если система ограничений совместна, то область ее решения есть множество точек, принадлежащих всем указанным полуплоскостям. Сово
Слайд 3

Каждое неравенство системы ограничений геометрически определяет полуплоскость с граничными прямыми Условия неотрицательности определяют полуплоскости с граничными прямыми Если система ограничений совместна, то область ее решения есть множество точек, принадлежащих всем указанным полуплоскостям. Совокупность этих точек называют многоугольником решений. Или областью допустимых решений (ОДР) ЗЛП.

Опр. Множество точек называется выпуклым, если вместе с любыми двумя точками оно содержит и весь отрезок. Тогда ОДР может быть вида: Выпуклый многоугольник; Выпуклая многоугольная неограниченная область; Пустая область; Отрезок; Единственная точка.
Слайд 4

Опр. Множество точек называется выпуклым, если вместе с любыми двумя точками оно содержит и весь отрезок. Тогда ОДР может быть вида: Выпуклый многоугольник; Выпуклая многоугольная неограниченная область; Пустая область; Отрезок; Единственная точка.

Целевая функция определяет на плоскости семейство прямых, одна из которых проходит через начало координат. Эта прямая называется основной. Прямая эта перпендикулярна нормальному вектору . Этот вектор указывает направление наискорейшего возрастания функции, а противоположный ему –направление наискоре
Слайд 5

Целевая функция определяет на плоскости семейство прямых, одна из которых проходит через начало координат. Эта прямая называется основной. Прямая эта перпендикулярна нормальному вектору . Этот вектор указывает направление наискорейшего возрастания функции, а противоположный ему –направление наискорейшего убывания. Так что это вектор вида

Прямая , перпендикулярная градиенту, является линией уровня целевой функции и поэтому во всех своих точках принимает одно и тоже значение. Приравнивая целевую функцию к постоянной , а затем меняя ее, получим семейство прямых, каждая из которых является линией уровня, которые обладают свойством: при
Слайд 6

Прямая , перпендикулярная градиенту, является линией уровня целевой функции и поэтому во всех своих точках принимает одно и тоже значение. Приравнивая целевую функцию к постоянной , а затем меняя ее, получим семейство прямых, каждая из которых является линией уровня, которые обладают свойством: при смещении в одну сторону уровень только возрастает, а в другую- только убывает.

Геометрическая интерпретация ЗЛП: Среди множества решений, которые находятся в многоугольнике решений, следует отыскать точку многоугольника, координаты которой обращают в максимум или минимум целевую функцию. Теорема. Если ЗЛП имеет оптимальный план, то целевая функция принимает свое оптимальное зн
Слайд 7

Геометрическая интерпретация ЗЛП:

Среди множества решений, которые находятся в многоугольнике решений, следует отыскать точку многоугольника, координаты которой обращают в максимум или минимум целевую функцию. Теорема. Если ЗЛП имеет оптимальный план, то целевая функция принимает свое оптимальное значение в одной из вершин многоугольника решений.

Для определения этой вершины строится основная прямая , которую перемещают в направлении градиента до тех пор, пока она не коснется последней крайней точки многоугольника решений. Это может быть вершина многоугольника, координаты которой и определяют максимальное значение целевой функции. Может быть
Слайд 8

Для определения этой вершины строится основная прямая , которую перемещают в направлении градиента до тех пор, пока она не коснется последней крайней точки многоугольника решений. Это может быть вершина многоугольника, координаты которой и определяют максимальное значение целевой функции. Может быть и такой случай, когда последняя точка лежит на стороне многоугольника, и тогда целевая функция принимает максимальное значение на всей этой прямой. Если же в направлении градиента многоугольник решений неограничен, то .

Нахождение решения ЗЛП на основе ее геометрической интерпретации включает следующие этапы: 1).Строят прямые, уравнения которых получаются в результате замены в ограничениях задачи знаков неравенств на знаки равенств. 2).Находят полуплоскости, определяемые из ограничений задачи. 3).Находят многоуголь
Слайд 9

Нахождение решения ЗЛП на основе ее геометрической интерпретации включает следующие этапы: 1).Строят прямые, уравнения которых получаются в результате замены в ограничениях задачи знаков неравенств на знаки равенств. 2).Находят полуплоскости, определяемые из ограничений задачи. 3).Находят многоугольник решений. 4). Строят вектор . 5). Строят прямую , проходящую через многоугольник решений. 6).Передвигают эту прямую в направлении градиента. 7)Определяют координаты точки максимума функции и вычисляют значение целевой функции в этой точке.

Пример. Задача о костюмах. Намечается выпуск двух видов костюмов - мужских и женских.. На женский костюм требуется 1м шерсти, 2м полиэстера и 1человеко-день трудозатрат. На мужской –3,5м шерсти, 0,5м полиэстера и 1 человеко-день трудозатрат. Всего имеется 350м шерсти, 240 м полиэстера и150 человекод
Слайд 10

Пример. Задача о костюмах.

Намечается выпуск двух видов костюмов - мужских и женских.. На женский костюм требуется 1м шерсти, 2м полиэстера и 1человеко-день трудозатрат. На мужской –3,5м шерсти, 0,5м полиэстера и 1 человеко-день трудозатрат. Всего имеется 350м шерсти, 240 м полиэстера и150 человекодней трудозатрат.

Требуется определить, сколько костюмов каждого вида необходимо сшить, чтобы обеспечить максимальную прибыль, если прибыль от реализации женского костюма составляет 10 денежных единиц, а от мужского-20 денежных единиц. При этом следует иметь в виду, что необходимо сшить не менее 60 мужских костюмов.
Слайд 11

Требуется определить, сколько костюмов каждого вида необходимо сшить, чтобы обеспечить максимальную прибыль, если прибыль от реализации женского костюма составляет 10 денежных единиц, а от мужского-20 денежных единиц. При этом следует иметь в виду, что необходимо сшить не менее 60 мужских костюмов.

Решение. Обозначим: -число женских и число мужских костюмов соответственно. Целевая функция . Ограничения
Слайд 12

Решение.

Обозначим: -число женских и число мужских костюмов соответственно. Целевая функция . Ограничения

Построим прямые Первая прямая пересекает оси координат в точках (350;0) и (0;100), вторая – в точках (120;0) и (0;0;480), третья – в точках (150;0) и (0;150).Четвертая прямая проходит параллельно оси .
Слайд 13

Построим прямые Первая прямая пересекает оси координат в точках (350;0) и (0;100), вторая – в точках (120;0) и (0;0;480), третья – в точках (150;0) и (0;150).Четвертая прямая проходит параллельно оси .

Строим все прямые и получаем четырехугольник, все точки которого удовлетворяют всем четырем функциональным ограничениям. Легко проверить: например, т.(0;0) лежит ниже всех трех первых прямых, но не удовлетворяет последнему соотношению. Так что, все точки внутри многоугольника удовлетворяют всем четы
Слайд 14

Строим все прямые и получаем четырехугольник, все точки которого удовлетворяют всем четырем функциональным ограничениям. Легко проверить: например, т.(0;0) лежит ниже всех трех первых прямых, но не удовлетворяет последнему соотношению. Так что, все точки внутри многоугольника удовлетворяют всем четырем неравенствам. Теперь построим градиент целевой функции (10;20). Для этого соединим точку (10,20) с началом координат. Можно построить вектор, пропорциональный этому вектору, т.е. длиннее или короче в зависимости от масштаба

Затем перпендикулярно ему основную прямую и будем перемещать ее в направлении градиента до ее выхода из ОДР. Это произойдет в точке пересечения прямых
Слайд 15

Затем перпендикулярно ему основную прямую и будем перемещать ее в направлении градиента до ее выхода из ОДР. Это произойдет в точке пересечения прямых

Решим систему двух уравнений и получим точку При этих значениях
Слайд 16

Решим систему двух уравнений и получим точку При этих значениях

0 120 480 150 60 350 maxF=2300 Линия уровня gradF=(10,20)
Слайд 17

0 120 480 150 60 350 maxF=2300 Линия уровня gradF=(10,20)

Пример. Найти максимум и минимум функции при ограничениях
Слайд 18

Пример

Найти максимум и минимум функции при ограничениях

Решение. Строим многоугольник решений. Для этого изобразим прямые Первая из них проходит через токчи (8;0) и (0;8), вторая – через точки (0,5;0) и (0;-1), третья –через точки (2;0) и (0;-1). Далее изобразим градиент (3;3) и линии уровня.
Слайд 19

Решение. Строим многоугольник решений. Для этого изобразим прямые Первая из них проходит через токчи (8;0) и (0;8), вторая – через точки (0,5;0) и (0;-1), третья –через точки (2;0) и (0;-1). Далее изобразим градиент (3;3) и линии уровня.

2 -1 88 8 B A C D Линии уровня
Слайд 20

2 -1 88 8 B A C D Линии уровня

Передвигая линию уровня в направлении возрастания , т.е. в направлении градиента, получаем, что целевая функция достигает максимального значения вдоль прямой На прямой возьмем точку , например В, координаты которой можно найти из системы уравнений Целевая функция здесь имеет значение
Слайд 21

Передвигая линию уровня в направлении возрастания , т.е. в направлении градиента, получаем, что целевая функция достигает максимального значения вдоль прямой На прямой возьмем точку , например В, координаты которой можно найти из системы уравнений Целевая функция здесь имеет значение

При решении данной задачи на минимум целевой функции линию уровня следует двигать в направлении, обратном направлению градиента. Целевая функция достигает минимума в точке D пересечения прямой с осью , т.е. в точке ((0,5;0). Тогда
Слайд 22

При решении данной задачи на минимум целевой функции линию уровня следует двигать в направлении, обратном направлению градиента. Целевая функция достигает минимума в точке D пересечения прямой с осью , т.е. в точке ((0,5;0). Тогда

Пример. Найти максимум функции при ограничениях
Слайд 23

Пример.

Найти максимум функции при ограничениях

Эта задача не имеет решения, т.к. целевая функция не ограничена сверху на ОДР. Это означает, что
Слайд 24

Эта задача не имеет решения, т.к. целевая функция не ограничена сверху на ОДР. Это означает, что

4 градиент
Слайд 25

4 градиент

Графический метод решения ЗЛП Слайд: 26
Слайд 26
Строим прямые, заменив знаки неравенств на знаки равенства, а затем закрасим область допустимых решений. Очевидно, начало координат находится ниже прямой , не удовлетворяет второму неравенству , поэтому точки области лежат правее этой прямой. Последнему неравенству удовлетворяет и поэтому получаем о
Слайд 27

Строим прямые, заменив знаки неравенств на знаки равенства, а затем закрасим область допустимых решений. Очевидно, начало координат находится ниже прямой , не удовлетворяет второму неравенству , поэтому точки области лежат правее этой прямой. Последнему неравенству удовлетворяет и поэтому получаем область на рисунке

1 3
Слайд 28

1 3

Из рисунка видим, что множество планов пусто, т.к.закрашенные области не имеют общих точек.
Слайд 29

Из рисунка видим, что множество планов пусто, т.к.закрашенные области не имеют общих точек.

Список похожих презентаций

Графический метод решения систем

Графический метод решения систем

Что называют системой уравнений? Рассмотрим два линейных уравнения: Y=-x+3 и Y=2x-3 Найдём такую пару значений (x;y), которая одновременно является ...
Графический метод решения систем уравнений с двумя переменными

Графический метод решения систем уравнений с двумя переменными

Обобщить графический способ решения систем уравнений; Сформировать умения графи-чески решать системы уравне-ний второй степени, привлекая известные ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

Восемь способов решения одного тригонометрического уравнения. 1.Приведение уравнения к однородному. 2.Разложение левой части уравнения на множители. ...
Методы решения уравнений

Методы решения уравнений

Результат учения равен произведению способности на старательность. Если старательность равна нулю, то и все произведение равно нулю. А способности ...
Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
Аналитические методы решения логарифмических уравнений

Аналитические методы решения логарифмических уравнений

Цели урока:. Обобщить и систематизировать изученные методы решения логарифмических уравнений Выявить особенности каждого метода Выяснить, всегда ли ...
Численные методы решения СЛАУ

Численные методы решения СЛАУ

Предмет вычислительной математики. Методы решения СЛАУ. Метод Гаусса Аx=f,. Теорема Крамера. Если определитель матрицы не равен нулю , то решение ...
Методы решения уравнений высших степеней

Методы решения уравнений высших степеней

Учитель математики Мурзабаева Фарида Мужавировна. Виды уравнений высших степеней. Уравнения третьей степени. Уравнения четвертой степени. Уравнения ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

«Думай о смысле, а слова придут сами». Льюис Кэрролл. Методы решения тригонометрических уравнений Указать метод решения уравнения:. . . . . . Методы ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

ЦЕЛЬ:. Систематизировать, обобщить, расширить знания и умения, связанные с применением методов решения тригонометрических уравнений. . . 1. Какие ...
Графический метод и симплекс-метод задачи линейного программирования

Графический метод и симплекс-метод задачи линейного программирования

Графический метод решения ЗЛП. Графический метод основан на геометрической интерпретации задачи линейного программирования. Найти минимальное решение ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

«Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию». Я. А. Коменский. Арксинус. ...
Специальные методы решения квадратных уравнений

Специальные методы решения квадратных уравнений

Рассмотрим решение квадратных уравнений, коэффициенты которых обладают определенными свойствами. Установим связь между суммой коэффициентов уравнения ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Построение графика линейной функции. Прямая линия. y = ах + b. х – любое действительное число. 1. Повторение. Построение графика функции обратной ...
Графический способ решения уравнений

Графический способ решения уравнений

1. Если k = -2, b = -4, то функция y = - 2 x - 4. 2. Если k = 2, b = 0, то функция y = 2 x. 3. Если k = 0, b = 3, то функция y = 3. через точку (0 ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Что является геометрической иллюстрацией уравнения с двумя неизвестными? y-x=2 y+x=2. y=x+2 *A(0;2) *B(-2;0). Уравнение можно рассматривать как формулу, ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Организационный момент; Подготовка к усвоению новых знаний; Изучение нового материала; Первичная проверка изученного материала; Первичное закрепление ...
Графический способ решения неравенств

Графический способ решения неравенств

График – говорящая линия, которая может о многом рассказать. М.Б. Балк. №1 №3. Шумит волна, звенит струна, Гитара поёт и поёт. Поёт о той, что вновь ...
Графический способ решения линейных систем уравнений

Графический способ решения линейных систем уравнений

Линейная функция – это функция вида  y=kx+b  , в котором k и b  - действительные числа. Графиком линейной функции y=kx+b  является прямая. Алгоритм ...
Графический способ решения квадратных уравнений

Графический способ решения квадратных уравнений

Графический способ решения уравнений. Решить графически уравнение. Ответ: х=-3 или х=1. Самостоятельная работа. 1. Постройте график функции и укажите ...

Конспекты

Системы двух линейных уравнений с двумя неизвестными. Графический метод решения линейных уравнений

Системы двух линейных уравнений с двумя неизвестными. Графический метод решения линейных уравнений

Урок алгебры в 7 классе на тему: "Системы двух линейных уравнений с двумя неизвестными. Графический метод решения линейных уравнений". Цели урока:. ...
Графический метод решения систем уравнений с двумя переменными

Графический метод решения систем уравнений с двумя переменными

Общеобразовательная школа. I. -. III. ступеней №5. Симферопольского городского совета Республики Крым. Конспект урока по алгебре. ...
Графический способ решения система уравнений с двумя переменными

Графический способ решения система уравнений с двумя переменными

Урок алгебры в10 классе по теме: «Графический способ решения система уравнений с двумя переменными». Цель урока:. добиться усвоения учащимися смысла ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Тема урока:. . Графический способ решения систем уравнений. Тип урока. : Урок изучения нового материала. Цели урока. :. Образовательные. ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

. . . . . . Урок алгебры по теме. «Графический способ решения систем. уравнений». Автор: Гаврилова Ирина Николаевна. Учитель математики ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

2. . . Дата: ________________. Класс: 9. Предмет: алгебра. Тема: «Графический способ решения систем уравнений». Цели:. Использовать графики ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Открытый бинарный урок (алгебра и информатика) по теме:. Графический способ решения систем уравнений. . (9-й класс). Учебник: Алгебра, 9 класс, ...
Графический способ решения систем двух уравнений с двумя неизвестными

Графический способ решения систем двух уравнений с двумя неизвестными

ПЛАН-КОНСПЕКТ УРОКА Графический способ решения систем двух уравнений с двумя неизвестными. . ФИО (полностью). . Гудиева Альбина Ахсаровна. ...
Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
Графический способ решения уравнений в среде Microsoft Excel 2007

Графический способ решения уравнений в среде Microsoft Excel 2007

Графический способ решения уравнений в среде Microsoft Excel 2007. Тип урока:. Обобщение, закрепление пройденного материала и объяснение нового. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:1 мая 2019
Категория:Математика
Содержит:29 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации