- Графический способ решения уравнений в среде Microsoft Excel 2007

Конспект урока «Графический способ решения уравнений в среде Microsoft Excel 2007» по математике

Графический способ решения уравнений в среде Microsoft Excel 2007

Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

Цели и задачи урока:

  • повторение изученных графиков функций;

  • повторение и закрепление графического способа решения уравнений;

  • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;

  • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;

  • формирование мышления, направленного на выбор оптимального решения;

  • формирование информационной культуры школьников.

Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

Ход урока

Организационный момент.

Слайды 1-3 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

Объявление темы урока.

1. Устная работа (актуализация знаний).

Слайд 4 - Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

у = 6 - х; у = 2х + 3; у = (х + 3)2; у = -(х - 4)2; .

Рис. 1.





Слайд 5 Графический способ решения уравнений вида f(x)=0.

Корнями уравнения f(x)=0 являются значения х1, х2,точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

Рис. 2.

Слайд 6

Найдите корни уравнения х2-2х-3=0, используя графический способ решения уравнений (Рис.3).

Ответ: -1; 3.

Рис. 3.











Слайд 7 Графический способ решения уравнений вида f (x)=g (x).

Корнями уравнения f(x)=g(x) являются значения х1, х2,точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

Рис. 4.

Слайд 8 Найдите корни уравнения , используя графический способ решения уравнений (Рис. 5).

Ответ: 4.

Рис. 5.

2. Объяснение нового материала. Практическая работа.

Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).





I. Графический способ решения уравнений вида f(x)=0 в Excel.

Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

Слайд 9

Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение -х2+5х-4=0.

Для этого: построить график функции у=-х2+5х-4 на промежутке [ 0; 5 ] с шагом 0,25; \найти значения х точек пересечения графика функции с осью абсцисс.

Выполнение задания можно разбить на этапы:

1 этап: Представление функции в табличной форме (рис. 6):

Рис. 6.

Для этого:

  • в ячейку А1 ввести текст Х, в ячейку A2Y;

  • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;

  • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

Рис. 7.

  • в ячейку B2 ввести формулу =-(B1^2)+5*B1-4;

При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул - сама формула (Рис. 8):

Рис. 8.

  • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

2 этап: Построение диаграммы типа График.

Для этого:

  • выделить диапазон ячеек B2:V2;

  • на вкладке Вставка|Диаграммы|График выбрать вид График;

  • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси - откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

Рис. 9.

  • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

Интервал между делениями: 4;

Интервал между подписями: Единица измерения интервала: 4;

Положение оси: по делениям;

Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

  • самостоятельно изменить ширину и цвет линии для вертикальной оси;

  • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

Примерный результат работы приведен на рис. 10:

Рис. 10.

3 этап: Определение корней уравнения.

График функции у=-х2+5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение 2+5х-4=0 имеет два корня: х1=1; х2=4.

II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

Слайд 10

Пример 2: Решить графическим способом уравнение .

Для этого: в одной системе координат построить графики функций у1= и у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.

  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1= воспользоваться встроенной функцией Корень (Рис. 11).

Рис. 11.

2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);

  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.

Примерный результат работы приведен на Рис. 12:

Рис. 12.

3 этап: Определение корней уравнения.

Графики функций у1= и у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение имеет один корень – абсцисса этой точки: х=0.

III. Метод Подбор параметра.

Слайд 12

Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

Слайд 13

Пример 3: Разберем метод Подбор параметра на примере решения уравнения -х2+5х-3=0.

1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

Построить график функции у=-х2+5х-3, отредактировав полученные в Примере 1 формулы.

Для этого:

  • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;

  • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

Все изменения сразу отобразятся на графике.

Примерный результат работы приведен на Рис. 13:

Рис. 13.

2 этап: Определение приближенных значений корней уравнения.

График функции у=-х2+5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение 2+5х-4=0 имеет два корня.

По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

1) Начать с поиска более точного значения меньшего корня.

По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

  • Выделить ячейку Е2;

  • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;

В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

Щелкнуть по кнопке ОК.

Рис. 14.

Рис. 15.

  • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:

  • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

3. Закрепление изученного материала. Самостоятельная работа.

Слайд 14

Задание: Используя метода Подбор параметров, найти корни уравнения с точностью до 0,001.

Для этого:

  • ввести функцию у= и построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

Рис. 16.

  • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);

  • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

4. Итог урока.

Слайд 15 Проверка результатов самостоятельной работы.

Слайд 16 Повторение графического способа решения уравнения вида f(x)=0.

Слайд 17Повторение графического способа решения уравнения вида f(x)=g(x).

Выставление оценок.

5. Домашнее задание.

Слайд 18 .

Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х2-5х+2=0 с точностью до 0,01.

6. Рефлексия.

Слайд 19.



Здесь представлен конспект к уроку на тему «Графический способ решения уравнений в среде Microsoft Excel 2007», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Математика Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Графический способ решения систем уравнений

Графический способ решения систем уравнений

. . . . . . Урок алгебры по теме. «Графический способ решения систем. уравнений». Автор: Гаврилова Ирина Николаевна. Учитель математики ...
Графический способ решения систем двух уравнений с двумя неизвестными

Графический способ решения систем двух уравнений с двумя неизвестными

ПЛАН-КОНСПЕКТ УРОКА Графический способ решения систем двух уравнений с двумя неизвестными. . ФИО (полностью). . Гудиева Альбина Ахсаровна. ...
Различные способы решения квадратных уравнений

Различные способы решения квадратных уравнений

Тема : Различные способы решения квадратных уравнений. Цель:. научиться решать квадратные уравнение различных видов Задачи:. . . Обобщить знания ...
Решение задач с помощью уравнений - способ решения задач с помощью уравнений

Решение задач с помощью уравнений - способ решения задач с помощью уравнений

Учитель. : Годованная Анна Викторовна. Предмет:. математика. Класс. : 5. Тема урока. : Решение задач с помощью уравнений. - способ ...
Квадратное неравенство. Графический способ решения

Квадратное неравенство. Графический способ решения

Автор:. Перханова Валентина Кирилловна. Полное название образовательного учреждения. : Иркутская область, Ольхонский район, п. Бугульдейка, МКОУ ...
Способы решения логарифмических уравнений

Способы решения логарифмических уравнений

Тема: «Способы решения логарифмических уравнений». . . . . . . . Предмет. . Алгебра и начала математического анализа. ...
Графический способ задания функции

Графический способ задания функции

Тема: Графический способ задания функции. . Цели:. . 1) Совершенствовать навыки построения графиков функций, используя таблицу. 2) Уметь по графику ...
Решения системы уравнений с двумя переменными

Решения системы уравнений с двумя переменными

Конспект урока по математике 6класс по проектной технологии. « Решения системы уравнений с двумя переменными». Цель урока: Обучающая:. Познакомить ...
Применение метода половинного деления отрезка для приближенного решения уравнений

Применение метода половинного деления отрезка для приближенного решения уравнений

Воробьева. Любовь Владимировна. учитель математики и информатики. МКОУ Алешковская СОШ. Воронежская область. Класс:10. Тема урока:. «Применение ...
Применение различных способов решения задач на проценты

Применение различных способов решения задач на проценты

Урок математики. для 6 класса. «Применение различных способов решения задач на проценты». Федотова Н.М., учитель математики высшей категории. ...
Общие методы решения уравнений

Общие методы решения уравнений

Разработка урока в 11 классе. . Тема урока: Общие методы решения уравнений. Цели:. Повторить и расширить сведения об уравнениях и способах ...
Основные методы решения тригонометрических уравнений

Основные методы решения тригонометрических уравнений

. МАТЕМАТИКА 11 класс. Тема: Основные методы решения тригонометрических уравнений. Цели урока:. Обобщить и систематизировать полученные знания ...
Общие методы решения тригонометрических уравнений

Общие методы решения тригонометрических уравнений

. ГБОУ ООШ с. Малое Ибряйкино. Похвистневского района Самарской области. Конспект урока для 10 класса на тему. «Общие методы ...
Общие методы решения уравнений

Общие методы решения уравнений

Конспект занятия по теме «Общие методы решения уравнений». 2 урока по 45 минут. Цели урока. Обучающие. : обобщить ранее накопленные теоретические ...
Общие методы решения логарифмических и показательных уравнений

Общие методы решения логарифмических и показательных уравнений

11 класс. Тема урока: Общие методы решения логарифмических. и показательных уравнений. Веками люди над их открытием трудились, Показательная ...
Решение уравнений разными способами

Решение уравнений разными способами

Урок математики по системе Л. В. Занкова. Учитель МОУ гимназии №9 Сизонова Ирина Александровна. ТЕМА: Решение уравнений разными способами. ...
Методы решения показательных уравнений

Методы решения показательных уравнений

Урок – практикум по математике в 11 классе. Тема: «Методы решения показательных уравнений». (А.Г. Мордкович, Л.О. Денищева, Т.А. Корешкова). ...
Методы решения иррациональных уравнений

Методы решения иррациональных уравнений

Конспект урока – практикума с презентацией по теме. «Методы решения иррациональных уравнений». . Аннотация:. . . Урок алгебры и начала анализа ...
Методы решения иррациональных уравнений

Методы решения иррациональных уравнений

Урок по теме «Методы решения иррациональных уравнений» в 11 классе. . Бекиш И.И. учитель математики, 1 категории,Успенская средняя школа, район ...
Нестандартные приемы решения квадратных уравнений

Нестандартные приемы решения квадратных уравнений

. Тема урока:. . Нестандартные приемы решения квадратных уравнений. Цели урока:. Образовательная. – познакомить учащихся с нестандартными. ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:7 октября 2016
Категория:Математика
Поделись с друзьями:
Скачать конспект