- Транспортные задачи и задачи о назначениях

Презентация "Транспортные задачи и задачи о назначениях" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Транспортные задачи и задачи о назначениях" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Лекция 5. Транспортные задачи и задачи о назначениях. Содержание лекции: Формулировка транспортной задачи Метод потенциалов Особенности решения открытой транспортной задачи Задача о назначениях. Транспортные задачи и задачи о назначениях © Н.М. Светлов, 2007-2011
Слайд 1

Лекция 5. Транспортные задачи и задачи о назначениях

Содержание лекции: Формулировка транспортной задачи Метод потенциалов Особенности решения открытой транспортной задачи Задача о назначениях

Транспортные задачи и задачи о назначениях © Н.М. Светлов, 2007-2011

Литература. Экономико-математические методы и прикладные модели: Учеб. пособие для вузов / Под ред. В.В. Федосеева. — 2-е изд. М.: ЮНИТИ-ДАНА, 2005. — раздел 3.2. Фомин Г.П. Математические методы и модели в коммерческой деятельности: Учебник. – 2-е изд. М.: Финансы и статистика, 2005. — раздел 2.2.6
Слайд 2

Литература

Экономико-математические методы и прикладные модели: Учеб. пособие для вузов / Под ред. В.В. Федосеева. — 2-е изд. М.: ЮНИТИ-ДАНА, 2005. — раздел 3.2. Фомин Г.П. Математические методы и модели в коммерческой деятельности: Учебник. – 2-е изд. М.: Финансы и статистика, 2005. — раздел 2.2.6. Вентцель Е.С. Исследование операций: Задачи, принципы, методология. М.: Высшая школа, 2001.

5.1. Формулировка транспортной задачи. Дано: Множество I, включающее m пунктов отправления груза, имеющегося в количествах ai (i=1…m) Множество J, включающее n пунктов потребления, в каждом из которых имеется спрос на данный груз в количестве bj (j=1…n) Затраты cij на перевозку единицы груза между п
Слайд 3

5.1. Формулировка транспортной задачи

Дано: Множество I, включающее m пунктов отправления груза, имеющегося в количествах ai (i=1…m) Множество J, включающее n пунктов потребления, в каждом из которых имеется спрос на данный груз в количестве bj (j=1…n) Затраты cij на перевозку единицы груза между пунктами i и j Найти: План перевозок X = (xij), согласно которому груз из пунктов отправления перевозится в пункты потребления с минимальными издержками, а спрос удовлетворяется полностью Обычно предполагается, что общий размер запасов груза равен спросу (закрытая транспортная задача). При этом условии задача всегда имеет оптимальное решение.

5.1. Математическая запись
Слайд 4

5.1.

Математическая запись

Получившаяся задача имеет форму задачи линейного программирования Её можно решить симплексным методом Однако есть более эффективные способы её решения
Слайд 5

Получившаяся задача имеет форму задачи линейного программирования Её можно решить симплексным методом Однако есть более эффективные способы её решения

5.2. Метод потенциалов
Слайд 6

5.2. Метод потенциалов

5.2.1. Начальное распределение транспортных потоков. Теоретическая основа Ранг матрицы ограничений транспортной задачи равен n+m–1 В оптимальном плане все переменные, кроме n+m–1, будут свободными Следовательно, равными нулю Метод северо-западного угла Не использует данных о затратах Обычно приводит
Слайд 7

5.2.1. Начальное распределение транспортных потоков

Теоретическая основа Ранг матрицы ограничений транспортной задачи равен n+m–1 В оптимальном плане все переменные, кроме n+m–1, будут свободными Следовательно, равными нулю Метод северо-западного угла Не использует данных о затратах Обычно приводит к распределению, требующему много корректировок Зато самый простой 

 5.2.1. i=1, j=1 xij = min(a’i,b’j) Если xij = a’i, то i  i+1; иначе j  j+1 Если i>m, то процесс завершён; иначе переход к 2. 30. Ещё не вывезенный остаток. Ещё не удовлетво-рённый спрос. 10 20. Начальное распределение получено! i =1 j =1 i =2 i =3 j =2 j =3
Слайд 8

 5.2.1

i=1, j=1 xij = min(a’i,b’j) Если xij = a’i, то i  i+1; иначе j  j+1 Если i>m, то процесс завершён; иначе переход к 2.

30

Ещё не вывезенный остаток

Ещё не удовлетво-рённый спрос

10 20

Начальное распределение получено!

i =1 j =1 i =2 i =3 j =2 j =3

5.2.2. Расчёт потенциалов. Теоретическая основа Потенциалы приписываются поставщикам (ui) и потребителям (vj). Уравнение потенциалов cij = vj – ui Расчёт потенциалов: подобрать такие vj и ui, чтобы уравнение потенциалов выполнялось для всех базисных клеток (перевозок)
Слайд 9

5.2.2. Расчёт потенциалов

Теоретическая основа Потенциалы приписываются поставщикам (ui) и потребителям (vj). Уравнение потенциалов cij = vj – ui Расчёт потенциалов: подобрать такие vj и ui, чтобы уравнение потенциалов выполнялось для всех базисных клеток (перевозок)

5.2.2. i = 1; ui = 0 В строке i находим множество столбцов J’ с ненулевыми перевозками и нерассчитанными потенциалами Для всех j  J’ выполняем vj  ui + cij В столбце j находим множество строк I’ с ненулевыми перевозками и нерассчитанными потенциалами. Для всех i  I’ выполняем ui  vj – cij Выполн
Слайд 10

5.2.2

i = 1; ui = 0 В строке i находим множество столбцов J’ с ненулевыми перевозками и нерассчитанными потенциалами Для всех j  J’ выполняем vj  ui + cij В столбце j находим множество строк I’ с ненулевыми перевозками и нерассчитанными потенциалами. Для всех i  I’ выполняем ui  vj – cij Выполняем (2) Процесс закончен, когда I’ или J’ оказывается пустым

Расчёт потенциалов завершён!

0 6 -2 12 10/18

5.2.3. Проверка оптимальности. Теоретическая основа По используемым перевозкам cij разница в «ценах» (потенциалах) у потребителя j и у поставщика i равна стоимости перевозки это следует из способа расчёта потенциалов Неиспользуемая перевозка cij выгодна, если разница в «ценах» (потенциалах) у потреб
Слайд 11

5.2.3. Проверка оптимальности

Теоретическая основа По используемым перевозкам cij разница в «ценах» (потенциалах) у потребителя j и у поставщика i равна стоимости перевозки это следует из способа расчёта потенциалов Неиспользуемая перевозка cij выгодна, если разница в «ценах» (потенциалах) у потребителя j и у поставщика i больше стоимости перевозки Условие оптимальности Разница в потенциалах потребителя и поставщика по всем неиспользуемым перевозкам не больше стоимости перевозки

11/18

5.2.3. Условие оптимальности Разница в потенциалах потребителя и поставщика по всем неиспользуемым перевозкам не больше стоимости перевозки В нашем примере выполняется не по всем неисп. перевозкам Выполняется только для 1  2. Значит, требуется переход к п.4. – корректировка плана. 12/18 -3 5 9 2
Слайд 12

5.2.3

Условие оптимальности Разница в потенциалах потребителя и поставщика по всем неиспользуемым перевозкам не больше стоимости перевозки В нашем примере выполняется не по всем неисп. перевозкам Выполняется только для 1  2. Значит, требуется переход к п.4. – корректировка плана

12/18 -3 5 9 2

5.2.4. Корректировка плана. Выбираем клетку с превышением разности потенциалов потребителя и поставщика над стоимостью транспортировки как правило, с наибольшим Строим контур (см. схему), начиная с данной клетки Помечаем вершины контура знаками + и – начинаем со знака + в выбранной свободной клетке.
Слайд 13

5.2.4. Корректировка плана

Выбираем клетку с превышением разности потенциалов потребителя и поставщика над стоимостью транспортировки как правило, с наибольшим Строим контур (см. схему), начиная с данной клетки Помечаем вершины контура знаками + и – начинаем со знака + в выбранной свободной клетке

Находим наименьшую из величин в клетках со знаком – Вычитаем её из всех клеток «–» и прибавляем ко всем клеткам «+» Одну из клеток, в которых оказался нуль, объявляем свободной. Переходим к проверке критерия оптимальности

13/18

5.2.4 14/18
Слайд 14

5.2.4 14/18

ОСОБЕННОСТИ Контур можно построить всегда, но не всегда удаётся угадать правильный путь В больших задачах отыскание циклов вручную может оказаться проблематичным Для компьютерных программ это не составляет проблемы Контур может оказаться вырожденным Так случается, если наименьшим значением в клетке
Слайд 15

ОСОБЕННОСТИ Контур можно построить всегда, но не всегда удаётся угадать правильный путь В больших задачах отыскание циклов вручную может оказаться проблематичным Для компьютерных программ это не составляет проблемы Контур может оказаться вырожденным Так случается, если наименьшим значением в клетке со знаком – оказывается нуль Пересчёт по такому циклу не улучшает план, вследствие чего метод может зациклиться в этом случае выбирают другую свободную клетку в качестве начальной Если после пересчёта получились нули в нескольких клетках, в качестве свободной можно выбрать любую из них Остальные считаются базисными с нулевым объёмом перевозки

15/18

5.3. Особенности решения открытой транспортной задачи. 16/18
Слайд 16

5.3. Особенности решения открытой транспортной задачи

16/18

5.4. Задача о назначениях. 17/18
Слайд 17

5.4. Задача о назначениях

17/18

5.4. Переформулируется в транспортную задачу по следующему правилу: имеется n поставщиков, располагающих единичными ресурсами работники имеется n потребителей с единичным спросом работы стоимость перевозок равна добавленной стоимости, взятой со знаком «минус» это делается для того, чтобы добавленная
Слайд 18

5.4

Переформулируется в транспортную задачу по следующему правилу: имеется n поставщиков, располагающих единичными ресурсами работники имеется n потребителей с единичным спросом работы стоимость перевозок равна добавленной стоимости, взятой со знаком «минус» это делается для того, чтобы добавленная стоимость максимизировалась Решается методом потенциалов, как обычно «Перевозки единичного объёма груза» интерпретируются как назначение работника i на работу j Все базисные переменные в этом случае могут принимать только единичные значения

18/18

Список похожих презентаций

«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Доли и дроби»

«Доли и дроби»

1. Доли. Разделы. 2. Сравнение долей. 3. Нахождение доли числа. 5. Проценты. 6. Дроби. 7. Сравнение дробей. 4. Нахождение числа по доле. 8. Нахождение ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Доли и дроби"

"Доли и дроби"

Семья Долиных:. Бабушка Доля Дедушка Доль Внуки Дробик и Долюша. Бабушка доля очень любит печь пироги. Дробик пришел с фермы очень голодный. разрезал ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
"Великие" о математике

"Великие" о математике

Карл Фридрих Гаусс (1777-1855). "Математика - царица наук, арифметика - царица математики". Софья Васильевна Ковалевская (1850-1891). "Нельзя быть ...
I Функция У=АХ², её график и свойства

I Функция У=АХ², её график и свойства

А=1 У=Х ². А=2 У=2Х ². У=Х² У=2Х². Растяжение от оси Х в два раза. А=0.5 У=Х² У=0.5Х². Сжатие по оси Х в два раза. Вообще график функции У=АХ² можно ...
Cинус, косинус, тангенс и котангенс угла

Cинус, косинус, тангенс и котангенс угла

Тест. Синус угла А равен: а) 4/5; б) 3/5; в) 4/3 2.Тангенс угла В равен: а) 4/3; б) 3/5; в)¾ 3.Косинус. равен : а) б) ½; в). 4. Упростить выражение:. ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...

Конспекты

Алгоритм решения задачи на нахождение целого и частей

Алгоритм решения задачи на нахождение целого и частей

. Тимошенкова. Ирина Викторовна. Учитель начальных классов. МБ НОУ «Гимназия № 70». Г. Новокузнецк. Алгоритм. решения задачи. ...
Взаимно обратные задачи

Взаимно обратные задачи

Математика. Тема:. Взаимно обратные задачи. Цель:. Сформировать представление о взаимно обратных задачах, умение их распознавать и составлять задачи ...
Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов. . КАЗАХСТАН. ЮЖНО-КАЗАХСТАНСКАЯ ОБЛАСТЬ. Г.ШЫМКЕНТ, ОСНОВНАЯ СРЕДНЯЯ ШКОЛА №97. ...
Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
А.С.Пушкин «Сказка о царе Салтане

А.С.Пушкин «Сказка о царе Салтане

Учитель начальных классов. . КГУ «ОСШ №32» г.Темиртау. Реберг Ольга Михайловна. В гостях у сказки на уроке математики. 2 класс. Тема:. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Конспект урока математики в 10 классе. Жирнова С.В. учитель математики. Тема урока:. «Арифметический квадратный корень и его свойства». Тип урока. ...
В мир одночленов и многочленов

В мир одночленов и многочленов

Алгебра 7 класс. Урок – путешествие «В мир одночленов и многочленов». Цели:. обеспечить повторение и систематизацию материала темы; создать ...
Величины (длина, масса, время, объем) и единицы измерения

Величины (длина, масса, время, объем) и единицы измерения

Математика. . Тема урока. :. Величины (длина, масса, время, объем) и единицы. . измерения. Цели:. повторить единицы измерения массы, длины, ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:20 мая 2019
Категория:Математика
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации