- ГИА 2013. Модуль АЛГЕБРА №7

Презентация "ГИА 2013. Модуль АЛГЕБРА №7" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26

Презентацию на тему "ГИА 2013. Модуль АЛГЕБРА №7" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 26 слайд(ов).

Слайды презентации

ГИА 2013. Модуль «АЛГЕБРА» №7. Автор презентации: Гладунец Ирина Владимировна учитель математики МБОУ гимназии №1 г.Лебедянь Липецкой области
Слайд 1

ГИА 2013. Модуль «АЛГЕБРА» №7

Автор презентации: Гладунец Ирина Владимировна учитель математики МБОУ гимназии №1 г.Лебедянь Липецкой области

Модуль «Алгебра» №4. 1 способ: (a+b)²(a-b)²=(a²+2ab+b²)(a²-2ab+b²)= =a⁴-2a³b+a²b²+2a³b-4a²b²+2ab³+a²b²-2ab³+b⁴= = a⁴-2a²b²+b⁴. Повторение (5) Ответ: 1. Преобразуйте в многочлен выражение (a+b)²(a-b)². Найдите значение многочлена при. 2 способ: (a+b)²(a-b)² = (a+b)(a-b)∙(a+b)(a-b) = (a²-b²)² = a⁴-2a²
Слайд 2

Модуль «Алгебра» №4

1 способ: (a+b)²(a-b)²=(a²+2ab+b²)(a²-2ab+b²)= =a⁴-2a³b+a²b²+2a³b-4a²b²+2ab³+a²b²-2ab³+b⁴= = a⁴-2a²b²+b⁴

Повторение (5) Ответ: 1

Преобразуйте в многочлен выражение (a+b)²(a-b)². Найдите значение многочлена при

2 способ: (a+b)²(a-b)² = (a+b)(a-b)∙(a+b)(a-b) = (a²-b²)² = a⁴-2a²b²+b⁴

Повторение (подсказка). Квадрат суммы (разности) двух выражений равен квадрату первого выражения плюс (минус) удвоенное произведение первого и второго выражений и плюс квадрат второго выражения. Чтобы умножить многочлен на многочлен, надо умножить каждый член одного многочлена на каждый член другого
Слайд 3

Повторение (подсказка)

Квадрат суммы (разности) двух выражений равен квадрату первого выражения плюс (минус) удвоенное произведение первого и второго выражений и плюс квадрат второго выражения.

Чтобы умножить многочлен на многочлен, надо умножить каждый член одного многочлена на каждый член другого многочлена.

Если у слагаемых одинаковая буквенная часть, то они подобны. При сложении таких слагаемых складывают коэффициенты и умножают на общую буквенную часть.

Произведение разности двух выражений на их сумму равно разности квадратов этих выражений.

Если квадратный корень возвести в квадрат, то получим подкоренное выражение.

Повторение (2) Ответ: 2,05. Сократите дробь . Найдите значение выражения при а = 3,05 и b=
Слайд 4

Повторение (2) Ответ: 2,05

Сократите дробь . Найдите значение выражения при а = 3,05 и b=

Чтобы сократить дробь, надо и числитель, и знаменатель разложить на множители. Чтобы перевести обыкновенную дробь в десятичную, надо числитель разделить на знаменатель.
Слайд 5

Чтобы сократить дробь, надо и числитель, и знаменатель разложить на множители.

Чтобы перевести обыкновенную дробь в десятичную, надо числитель разделить на знаменатель.

Повторение (4) Ответ: Сократите дробь . D>0, ⇒ 2 корня:
Слайд 6

Повторение (4) Ответ: Сократите дробь . D>0, ⇒ 2 корня:

Разность квадратов равна произведению разности этих выражений на из сумму. Квадратный трехчлен можно разложить на множители по формуле. Корни квадратного трехчлена можно найти по формулам: Чтобы сократить дробь, надо и числитель и знаменатель разделить на одно и тоже выражение, не равное нулю.
Слайд 7

Разность квадратов равна произведению разности этих выражений на из сумму.

Квадратный трехчлен можно разложить на множители по формуле

Корни квадратного трехчлена можно найти по формулам:

Чтобы сократить дробь, надо и числитель и знаменатель разделить на одно и тоже выражение, не равное нулю.

ГИА 2013. Модуль АЛГЕБРА №7 Слайд: 8
Слайд 8
Если у слагаемых есть общий множитель, то при разложении многочлена на множители этот множитель можно вынести за скобку. Разность квадратов можно разложить по формуле:
Слайд 9

Если у слагаемых есть общий множитель, то при разложении многочлена на множители этот множитель можно вынести за скобку.

Разность квадратов можно разложить по формуле:

Повторение (3). Выполните умножение:
Слайд 10

Повторение (3)

Выполните умножение:

Чтобы сложить дроби с разными знаменателями, надо привести дроби к общему знаменателю и сложить числители. Чтобы умножить дроби, надо отдельно умножить числители и знаменатели. В процессе умножения дробей можно сокращать. Для этого надо числители и знаменатели дробей разложить на множители. Трехчлен
Слайд 11

Чтобы сложить дроби с разными знаменателями, надо привести дроби к общему знаменателю и сложить числители.

Чтобы умножить дроби, надо отдельно умножить числители и знаменатели.

В процессе умножения дробей можно сокращать. Для этого надо числители и знаменатели дробей разложить на множители

Трехчлен a²+2ab+b² можно «свернуть» по формуле

Повторение (1). Выполните деление:
Слайд 12

Повторение (1)

Выполните деление:

Чтобы разделить дробь на дробь, надо первую дробь умножить на обратную второй дроби. Сумма противоположных слагаемых равна нулю.
Слайд 13

Чтобы разделить дробь на дробь, надо первую дробь умножить на обратную второй дроби.

Сумма противоположных слагаемых равна нулю.

Упростите выражение:
Слайд 14

Упростите выражение:

Чтобы сложить с дробью натуральное число, надо это число представить в виде дроби со знаменателем 1 и сложить по правилу дробей. Произведение двух одинаковых множителей можно записать в виде квадрата этого множителя.
Слайд 15

Чтобы сложить с дробью натуральное число, надо это число представить в виде дроби со знаменателем 1 и сложить по правилу дробей.

Произведение двух одинаковых множителей можно записать в виде квадрата этого множителя.

ГИА 2013. Модуль АЛГЕБРА №7 Слайд: 16
Слайд 16
Сумму кубов двух выражений можно разложить по формуле. Дробь, знаменатель которой равен единице, является целым выражением.
Слайд 17

Сумму кубов двух выражений можно разложить по формуле

Дробь, знаменатель которой равен единице, является целым выражением.

ГИА 2013. Модуль АЛГЕБРА №7 Слайд: 18
Слайд 18
Чтобы сложить дробь с одночленом, надо одночлен заменить дробью со знаменателем 1 и выполнить сложение дробей. Чтобы разложить многочлен на множители (в случае, если формулы сокращенного умножения на подходят), можно применить способ группировки. Далее надо каждую скобку разложить на множители своим
Слайд 19

Чтобы сложить дробь с одночленом, надо одночлен заменить дробью со знаменателем 1 и выполнить сложение дробей.

Чтобы разложить многочлен на множители (в случае, если формулы сокращенного умножения на подходят), можно применить способ группировки.

Далее надо каждую скобку разложить на множители своим способом.

Далее общий множитель в виде многочлена вынести за скобку.

Найдите значение выражения при n= :
Слайд 20

Найдите значение выражения при n= :

Чтобы проще выполнить задание, надо выражение с переменными упростить. Чтобы упростить запись дроби, ее надо сократить, а для этого надо числитель и знаменатель разложить на множители. Чтобы вынести общий множитель за скобки, надо разделить каждое слагаемое на этот множитель. Чтобы записать натураль
Слайд 21

Чтобы проще выполнить задание, надо выражение с переменными упростить.

Чтобы упростить запись дроби, ее надо сократить, а для этого надо числитель и знаменатель разложить на множители.

Чтобы вынести общий множитель за скобки, надо разделить каждое слагаемое на этот множитель.

Чтобы записать натуральное число в виде квадрата, надо его заключить под знак квадратного корня.

Чтобы «избавиться» от иррациональности в знаменателе, надо числитель и знаменатель умножить на иррациональный множитель.

Ответ: 14. Найдите значение выражения при
Слайд 22

Ответ: 14.

Найдите значение выражения при

Сначала надо выполнить действия с рациональными дробями.
Слайд 23

Сначала надо выполнить действия с рациональными дробями.

Ответ: 84.
Слайд 24

Ответ: 84.

Числитель дроби можно записать в виде разности кубов и разложить на множители по формуле. Если квадратный корень возвести в квадрат, то получится подкоренное число. Произведение квадратных корней из неотрицательных множителей равно квадратному корню из произведения этих множителей..
Слайд 25

Числитель дроби можно записать в виде разности кубов и разложить на множители по формуле

Если квадратный корень возвести в квадрат, то получится подкоренное число.

Произведение квадратных корней из неотрицательных множителей равно квадратному корню из произведения этих множителей..

Использованные ресурсы. http://www.grafamania.net/uploads/posts/2008-08/1219611582_7.jpg Автор шаблона Larisa Vladislavovna Larus http://www.proshkolu.ru/user/vladislava22/ «ГИА-2013. Математика: типовые экзаменационные варианты: 30 вариантов» под редакцией А. Л. Семенова, И. В. Ященко. – М.: Изд. «
Слайд 26

Использованные ресурсы

http://www.grafamania.net/uploads/posts/2008-08/1219611582_7.jpg Автор шаблона Larisa Vladislavovna Larus http://www.proshkolu.ru/user/vladislava22/ «ГИА-2013. Математика: типовые экзаменационные варианты: 30 вариантов» под редакцией А. Л. Семенова, И. В. Ященко. – М.: Изд. «Национальное образование», 2013.

Список похожих презентаций

ГИА 2013. Модуль «Алгебра» №7

ГИА 2013. Модуль «Алгебра» №7

Модуль «Алгебра» №3. Наибольшее число :. Повторение (4). Укажите наибольшее из чисел:. Ответ: ⎕ ⎕ ⎕ ⎕. Повторение (подсказка). Чтобы сравнить выражения, ...
ГИА 2013. Модуль алгебра №3

ГИА 2013. Модуль алгебра №3

Модуль «Алгебра» №3. Наибольшее число :. Повторение (4). Укажите наибольшее из чисел:. Ответ: ⎕ ⎕ ⎕ ⎕. Повторение (подсказка). Чтобы сравнить выражения, ...
ГИА 2013. Модуль алгебра №8

ГИА 2013. Модуль алгебра №8

Модуль «Алгебра» №8. Повторение (4). Решите неравенство 7+2(х-4)≥х+4. Ответ: [-3;+∞). Повторение (подсказка). При решении неравенства можно переносить ...
ГИА 2013. Модуль алгебра №1

ГИА 2013. Модуль алгебра №1

Модуль «Алгебра» №1. Повторение (1). Найдите значение выражения 0,5 ∙ 0,05 ∙ 0,005 . Ответ: 0,000125 0,5 ∙ 0,05 ∙ 0,005 = 1 + 3 6 000 =0,. Повторение ...
ГИА 2013. Модуль АЛГЕБРА (№8)

ГИА 2013. Модуль АЛГЕБРА (№8)

Модуль «Алгебра» №8. Повторение (4). Решите неравенство 7+2(х-4)≥х+4. Ответ: [-3;+∞). Повторение (подсказка). При решении неравенства можно переносить ...
ГИА 2013. Модуль АЛГЕБРА (№4)

ГИА 2013. Модуль АЛГЕБРА (№4)

Модуль «Алгебра» №4. Повторение (3) Ответ: -6 Решите уравнение. Повторение (подсказка). В уравнении можно делить обе части уравнения на одно и то ...
ГИА-2013г. Модуль АЛГЕБРА №6

ГИА-2013г. Модуль АЛГЕБРА №6

ГИА – 2013 г. Модуль «Алгебра» №6. «ГИА-2013. Математика: типовые экзаменационные варианты: 30 вариантов» под редакцией А. Л. Семенова, И. В. Ященко. ...
ГИА 2013. Модуль «Алгебра» №1

ГИА 2013. Модуль «Алгебра» №1

Модуль «Алгебра» №1. Повторение (1). Найдите значение выражения 0,5 ∙ 0,05 ∙ 0,005 . Ответ: 0,000125 0,5 ∙ 0,05 ∙ 0,005 = 1 + 3 6 000 =0,. Повторение ...
ГИА 2013. Модуль алгебра №6

ГИА 2013. Модуль алгебра №6

ГИА – 2013 г. Модуль «Алгебра» №6. «ГИА-2013. Математика: типовые экзаменационные варианты: 30 вариантов» под редакцией А. Л. Семенова, И. В. Ященко. ...
ГИА 2013. Модуль алгебра №2

ГИА 2013. Модуль алгебра №2

Модуль «Алгебра» №2. Повторение (2). На координатной прямой отмечено число а. Из следующих неравенств выберите верное:. Ответ: 3. Исходя из рисунка ...
ГИА 2013 Модуль «Геометрия» № 9

ГИА 2013 Модуль «Геометрия» № 9

Модуль «ГЕОМЕТРИЯ» №9. Ответ: 70   Повторение (2). Повторение. В равнобедренном треугольнике углы при основании равны. В треугольнике сумма углов ...
ГИА 2013 Модуль «Геометрия» № 11

ГИА 2013 Модуль «Геометрия» № 11

Модуль «ГЕОМЕТРИЯ» №11. Повторение (3) Ответ: 6. Найти площадь треугольника. В С А 8 3 30⁰. Повторение. Площадь треугольника равна половине произведения ...
ГИА – 2013 г. Модуль «Реальная математика». №14

ГИА – 2013 г. Модуль «Реальная математика». №14

ГИА – 2013 г. Модуль «Реальная математика». №14. «ГИА-2013. Математика: типовые экзаменационные варианты: 30 вариантов» под редакцией А. Л. Семенова, ...
ГИА 2013. Модуль Геометрия №13

ГИА 2013. Модуль Геометрия №13

Повторение(3) Ответ: 23. Укажите номера верных утверждений. 1.Через любые три различные точки плоскости можно провести единственную прямую. 2.Если ...
ГИА 2013. Модуль реальная математика №17

ГИА 2013. Модуль реальная математика №17

Модуль «РЕАЛЬНАЯ МАТЕМАТИКА» №17. Повторение (2). Найти расстояние от проектора С до экрана В. А В 180 см 90 см 240 см С H₁ H. Луч проектора АН₁⍊ ...
ГИА 2013. Модуль Геометрия №11

ГИА 2013. Модуль Геометрия №11

Модуль «ГЕОМЕТРИЯ» №11. Повторение (3) Ответ: 6. Найти площадь треугольника. В С А 8 3 30⁰. Повторение. Площадь треугольника равна половине произведения ...
ГИА 2013. Модуль Геометрия №12

ГИА 2013. Модуль Геометрия №12

Модуль «ГЕОМЕТРИЯ» №12. Повторение (3) Ответ: 45. Найти угол АВС (в градусах). В С А. Проведем из произвольной точки луча ВА перпендикуляр до пересечения ...
ГИА 2013. Модуль Геометрия №10

ГИА 2013. Модуль Геометрия №10

Модуль «ГЕОМЕТРИЯ» №10. Повторение (2) Ответ: 4. Найти АС. В С А 5 ⇒. По теореме Пифагора. Повторение. Косинус острого угла прямоугольного треугольника ...
ГИА 2013. Модуль ГЕОМЕТРИЯ (№13)

ГИА 2013. Модуль ГЕОМЕТРИЯ (№13)

Повторение(3) Ответ: 23. Укажите номера верных утверждений. 1.Через любые три различные точки плоскости можно провести единственную прямую. 2.Если ...
ГИА 2013. Модуль ГЕОМЕТРИЯ (№10)

ГИА 2013. Модуль ГЕОМЕТРИЯ (№10)

Модуль «ГЕОМЕТРИЯ» №10. Повторение (2) Ответ: 4. Найти АС. В С А 5 ⇒. По теореме Пифагора. Повторение. Косинус острого угла прямоугольного треугольника ...

Конспекты

Элементы теории вероятности в ГИА

Элементы теории вероятности в ГИА

13 апреля 2011г. Урок алгебры в 9 классе по теме:. . «Элементы теории вероятности в ГИА». Цели:. - Научиться анализировать и решать задачи ...
Решение планиметрических задач при подготовке к ГИА

Решение планиметрических задач при подготовке к ГИА

Открытый урок по геометрии в 9а классе. «Решение планиметрических задач при подготовке к ГИА». Учитель: Токмакова И.В. (высшая квалификационная ...
Функции и их графики. Подготовка к ГИА

Функции и их графики. Подготовка к ГИА

. Государственное бюджетное общеобразовательное учреждение. средняя общеобразовательная школа №625. с углублённым изучением математики Невского ...
Подготовка к ГИА в новой форме

Подготовка к ГИА в новой форме

Шкредова Г. М.,. . учитель высшей категории. МОУ «Новоигирменская СОШ №3». Нижнеилимского района. . Иркутской области. . Урок-консультация ...
Противоположные числа. Модуль числа

Противоположные числа. Модуль числа

Конспект урока по математике в 6 классе. . разработала учитель математики УВК «Уютненская школа-гимназия». . Костюкова Ольга Владимировна. , Республика ...
Модуль числа

Модуль числа

. План-конспект урока математики в 6 классе. по теме «Модуль числа». Цели урока:. Повторить основные понятия по теме «Координаты на прямой. ...
Модуль числа. Сравнение чисел

Модуль числа. Сравнение чисел

Конспект урока для 6 класса «Модуль числа. Сравнение чисел». ТЕМА УРОКА:. Цели урока:. . Обучающая:. повторить определение модуля и правила ...
Модуль числа

Модуль числа

Урок-игра по теме: Модуль числа. Форма проведения: комбинированный урок. Цели:. Образовательные:. организовать деятельность учащихся на отработку ...
Модуль числа

Модуль числа

Муниципальное общеобразовательное учреждение. «Средняя общеобразовательная школа №1 г.Суздаля». Учитель математики: Плотникова Т.В. . Конспект ...
Модуль числа

Модуль числа

УРОК. 6 класс по теме:. Тема урока. : Модуль числа. Цель урока. : - ввести понятие модуля числа;. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Математика
Содержит:26 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации