- Начнем с показательных уравнений

Конспект урока «Начнем с показательных уравнений» по алгебре

Начнем с показательных уравнений.


Во-первых, давайте определимся:

1. если мы возводим в положительную степень:

  • целое число, то в результате получим целое число

  • дробное число, то в результате получим дробное число

2. если мы возводим в отрицательную степень:

  • целое число, то в результате получим дробное  число

  • дробное число, то в результате получим целое число:

ЕГЭ по математике: задание В3

Во-вторых, надо знать таблицу степеней или хотя бы уметь ей пользоваться:

Таблица степеней

В- третьих, при решении показательных уравнений, Ваша задача добиться того, чтобы основания левой и правой части стали одинаковы:

Показательные уравнения

Рассмотрим пример из единой базы ЕГЭ:

ЕГЭ по математике: задание В3


Теперь разберем логарифмические уравнения:


Результат логарифма - это число, представляющее из себя степень в которую возводят основание логарифма и получают логарифмическую часть:

Логарифмы

В нашем случае: результат логарифма - это 2, основание - это 5, а логарифмическая часть -это  25.

Принцип решения логарифмических уравнений такой же как и при решении показательных уравнений: необходимо добиться того, чтобы основания логарифмов в левой и правой частях уравнений были одинаковы. в этом случае можно будет приравнять друг к другу логарифмические части:

ЕГЭ по математике: задание В3

В случае, если в правой части уравнения стоит число, то Ваша задача привести это число к логарифму. Любое число можно представить через логарифм с нужным для Вас основанием:

Логарифмы

В первом случае, мы число 2 представили через логарифм с основанием 5 (т.к. 5 в квадрате это 25, то логарифмическая часть равна 25), а во втором случае число представили  через основание 3, т.к. 3 в квадрате это 9, то логарифмическая часть равна 9.

Бывают ситуации, когда основанием является не число, а переменная:

Логарифмы

В первом случае число два представляем через логарифм с основанием х, а во втором случае число три через основание (х-2).

Давайте рассмотрим примеры, когда в правой части уравнения стоит число:

1. В основании стоит число:

ЕГЭ по математике: задание В3

Число 2 представили через логарифм с основанием три. т.к. в левой части стоит логарифм с основанием три, в результате основания логарифмов получились одинаковые, а значит можно приравнять логарифмические части друг к другу, а далее решаем обычное линейное уравнение.

2. В основании стоит переменная:

ЕГЭ по математике: задание В3

Число 2 представили через логарифм с основанием (х-6), т.к. такое основание у логарифма из левой части уравнения. Основания получились одинаковые, поэтому можно приравнять к друг другу логарифмические части, далее 9 надо представить через какое-либо число в степени 2 (почему 2? - в правой части выражение (х-6) возводится в квадрат, поэтому и в левой части надо возводить в квадрат). Этим числом является три, далее решаем линейное уравнение.

При решении логарифмических уравнений в задании В5 встречаются уравнения, где надо использовать некоторые свойства логарифмов. Я расскажу только о двух, встречающихся в этих уравнениях:

1. Число стоящее перед логарифмом можно внести в степень логарифмической части.

ЛогарифмыРазберем пример с использованием этого свойства:

ЕГЭ по математике: задание В3

2. Сумму двух логарифмов с одинаковыми основаниями можно преобразовать в один логарифм следующим образом:

ЛогарифмыРазберем пример на это свойство:

ЕГЭ по математике: задание В3

Итак, тригонометрические уравнения задания В5 ЕГЭ по математике, содержат три функции: sinx, cosx и tgx. Во-первых, надо знать значения тригонометрических функций:

Значения тригонометрических функций

Во-вторых формулы, которые используют при решении тригонометрических уравнений:

1. Функция  y=sinx.

Функция ограниченная: находиться в пределах [-1;+1]. Это значит, что при решении уравнений типа sinx=5 или sinx=-2 в ответе получается: нет корней, но в блоке В мы не можем записать такой ответ в бланк, значит уравнения должны давать какой-то конечный ответ.

Формулы для функции y=sinx:

Тригонометрические уравнения

Решим уравнение и в ответе напишем наибольший отрицательный корень:

Тригонометрические уравнения

Тригонометрические уравнения

Уравнение мы решили, но в ответ надо записать наибольший отрицательный корень. Для этого в уравнение вместо n надо подставлять следующие целые числа и считать результаты: 0, +1, -1, +2, -2, +3, -3 и т.д. до тех пор пока не найдете нужный Вам ответ:

Тригонометрические уравнения

Наибольший отрицательный корень: -1,5.

2. Функция у=cosx.

Функция тоже ограниченная: находиться в пределах [-1;+1]. Это значит, что при решении уравнений типа cosx=2 или cosx=-4 в ответе получается: нет корней, но в блоке В мы не можем записать такой ответ в бланк, значит уравнения должны давать какой-то конечный ответ.

Формулы для функции y=cosx:

Тригонометрические формулы

Решим уравнение и в ответе напишем наибольший отрицательный корень:

Тригонометрические уравнения

Уравнение мы решили, но в ответ надо записать наибольший отрицательный корень. Для этого в уравнение вместо n надо подставлять следующие целые числа и считать результаты: 0, +1, -1, +2, -2, +3, -3 и т.д. до тех пор пока не найдете нужный Вам ответ:

Тригонометрические функции

Тригонометрические уравнения

Наибольший отрицательный корень: -0,25

3. Функция y=tgx.

Тут всего одна формула, без частных случаев:

Тригонометрия

Решим уравнение и найдем наименьший отрицательный корень:

Тригонометрические уравненияТригонометрические уравнения

Наименьший положительный корень х=6.


Кроме тригонометрических уравнений встречаются еще ииррациональные уравнения.


Для решения иррациональных уравнений необходимо возвести в квадрат обе части уравнения, чтобы избавиться от корня.

Разберем на примере:

Тригонометрические уравнения

Здесь представлен конспект к уроку на тему «Начнем с показательных уравнений», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Решение показательных уравнений с параметрами

Решение показательных уравнений с параметрами

Решение показательных уравнений с параметрами. Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий кто желает к ...
Свойства показательной функции. Решение показательных уравнений и неравенств

Свойства показательной функции. Решение показательных уравнений и неравенств

Открытый урок по теме: «Свойства показательной функции. Решение показательных уравнений и неравенств.». Тип урока:. Обобщение и систематизация ...
Решение показательных уравнений

Решение показательных уравнений

Администрация Заводского района. Муниципального образования «Город Саратов». Муниципальное общеобразовательное учреждение. «Средняя общеобразовательная ...
Решение показательных уравнений и неравенств в 11 профильном классе

Решение показательных уравнений и неравенств в 11 профильном классе

Муниципальное бюджетное общеобразовательное учреждение лицей № 6. городского округа Тольятти. «Решение показательных уравнений и неравенств ...
Решение показательных уравнений

Решение показательных уравнений

Открытый урок по теме: "Решение показательных уравнений". . . 11 класс. . Цели:. . Образовательные:. . актуализация опорных знаний при ...
Решение показательных уравнений

Решение показательных уравнений

Урок по теме: «Решение показательных уравнений» для 10-11 классов. Разработала: преподаватель математики Бикирова Наиля Абдрашитовна. . ГБОУ СПО ...
Решение показательных уравнений

Решение показательных уравнений

Государственное бюджетное образовательное учреждение. Центр образования №170 Санкт-Петербурга. План-конспект двух уроков по алгебре и ...
Решение показательных уравнений

Решение показательных уравнений

Методическая разработка урока алгебры в 11 классе. Тема урока:. Решение показательных уравнений. Аудитория:. 11 класс. Место урока в теме:. урок ...
Решение показательных уравнений

Решение показательных уравнений

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ КЕМЕРОВСКОЙ ОБЛАСТИ. Государственное образовательное учреждение среднего профессионального образования. Кемеровский ...
Решение показательных уравнений различными способами

Решение показательных уравнений различными способами

КОНСПЕКТ УРОКА. Тема урока: Решение показательных уравнений различными способами. Цель воспитательная: обучение учащихся коллективной работе и взаимопомощи. ...
Методы решения показательных уравнений

Методы решения показательных уравнений

План-конспект урока обобщающего повторения. . «Методы решения показательных уравнений». Цели урока:. Обобщение знаний и умений учащихся по ...
Нестандартные способы решения показательных и логарифмических уравнений и неравенств

Нестандартные способы решения показательных и логарифмических уравнений и неравенств

Тема: Нестандартные способы решения. показательных и логарифмических уравнений. и неравенств.(11 класс). Капацына Людмила Константиновна, СШЛ №23 ...
Методы решение показательных уравнений

Методы решение показательных уравнений

Автор: Дементьева Ирина Николаевна. Место работы: МБОУ СОШ №2. с.Кривополянье Чаплыгинского района. Липецкой области. . Должность: учитель ...
Методы решения показательных и логарифмических уравнений и неравенств

Методы решения показательных и логарифмических уравнений и неравенств

Тема урока: «Методы решения показательных и логарифмических уравнений и неравенств». Тип урока:. . Цели урока: урок обобщения и систематизации ...
Способы решения тригонометрических уравнений

Способы решения тригонометрических уравнений

МОУ «СОШ имени А.П.Чехова». . . . . Урок алгебры в 10 классе. Тема урока:. «Способы. решения тригонометрических уравнений. ...
Системы уравнений

Системы уравнений

Белёнова Мария Сергеевна. . ГБОУ СОШ №1149. Урок на тему «Системы уравнений». Решите рациональным способом. . При решении учащиеся ...
Свойства уравнений и воспроизвести алгоритм решения уравнений, содержащих переменную в обеих частях

Свойства уравнений и воспроизвести алгоритм решения уравнений, содержащих переменную в обеих частях

Муниципальное казённое общеобразовательное учреждение. «Средняя общеобразовательная школа №1 г.Суздаля». Учитель математики: Плотникова Татьяна ...
Решение уравнений с помощью систем

Решение уравнений с помощью систем

Тема: Решение уравнений с помощью систем. Цели:. . 1. Образовательные -. рассмотреть основные методы решения уравнений с помощью систем, учить ...
Решение уравнений

Решение уравнений

6 класс. Тема «Решение уравнений». Задание:. решите уравнения и вставьте значения корней в соответствующие пропуски. . . 1) 2х + 40 = х + 200. ...
Решение тригонометрических уравнений

Решение тригонометрических уравнений

Разработка темы. . «Решение тригонометрических уравнений». в итоговом повторении в 11 классе,. . при подготовке к экзаменам. Цель уроков:. ...