- Применение свойств и признаков равенства прямоугольных треугольников к решению практических задач

Презентация "Применение свойств и признаков равенства прямоугольных треугольников к решению практических задач" (7 класс) по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "Применение свойств и признаков равенства прямоугольных треугольников к решению практических задач" (7 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

Тема: Применение свойств и признаков равенства прямоугольных треугольников к решению практических задач. (Урок геометрии – 7 класс) Цель: показать практическое применение свойств и признаков равенства прямоугольных треугольников к решению практических задач; познакомить с историей развития некоторых
Слайд 1

Тема: Применение свойств и признаков равенства прямоугольных треугольников к решению практических задач. (Урок геометрии – 7 класс) Цель: показать практическое применение свойств и признаков равенства прямоугольных треугольников к решению практических задач; познакомить с историей развития некоторых математических идей, их влияние на жизнь современного общества; Развивать интуицию, способность ориентироваться в новых ситуациях, стремление к применению полученных знаний, воспитывать уважение к значимости полученных знаний.

«Сближение теории с практикой даёт самые благотворные результаты, и не одна только практика от этого выигрывает». П.А. Чебышев
Слайд 2

«Сближение теории с практикой даёт самые благотворные результаты, и не одна только практика от этого выигрывает». П.А. Чебышев

Найдите пары равных треугольников и объясните их равенство. В А А D E C А D C	C D B C M B AD = DC
Слайд 3

Найдите пары равных треугольников и объясните их равенство. В А А D E C А D C C D B C M B AD = DC

Найдите пары равных треугольников и объясните их равенство. В А А Е D А D С С D В В М С АD = СD
Слайд 4

Найдите пары равных треугольников и объясните их равенство. В А А Е D А D С С D В В М С АD = СD

Найти длину отрезка АМ. A A A 60° 8 45° M B M 4 B B M C BC = 10
Слайд 5

Найти длину отрезка АМ. A A A 60° 8 45° M B M 4 B B M C BC = 10

РЕШЕНИЕ A 8
Слайд 6

РЕШЕНИЕ A 8

Найти угол α А С α 8 α С 4	В В А
Слайд 7

Найти угол α А С α 8 α С 4 В В А

α. РЕШЕНИЕ А С α 8 α С 4 В В А СВ равен половине АВ Треугольник АВС равнобедренный α = 300 СВ = АВ
Слайд 8

α

РЕШЕНИЕ А С α 8 α С 4 В В А СВ равен половине АВ Треугольник АВС равнобедренный α = 300 СВ = АВ

II. Самостоятельная работа (работа в группах). За решение каждой задачи пять баллов Карточки с заданиями лежат на партах 1. Доказать, что точка биссектрисы угла равноудалена от его сторон. 2. Доказать, что каждая точка, равноудалённая от сторон угла, лежит на его биссектрисе.
Слайд 9

II. Самостоятельная работа (работа в группах). За решение каждой задачи пять баллов Карточки с заданиями лежат на партах 1. Доказать, что точка биссектрисы угла равноудалена от его сторон. 2. Доказать, что каждая точка, равноудалённая от сторон угла, лежит на его биссектрисе.

РЕШЕНИЕ ЗАДАЧИ №1. А М D В О С треугольники АMO и ADO прямоугольные(
Слайд 10

РЕШЕНИЕ ЗАДАЧИ №1. А М D В О С треугольники АMO и ADO прямоугольные(

РЕШЕНИЕ ЗАДАЧИ №2 А D M O треугольники АDO и AMO прямоугольные(
Слайд 11

РЕШЕНИЕ ЗАДАЧИ №2 А D M O треугольники АDO и AMO прямоугольные(

III. Решение практических задач. (Задания написаны на карточках) 1. Населённые пункты A, B, C, D расположены так, что пункт А находится в нескольких километрах к югу от D, а пункты В и С – на одинаковых расстояниях к западу и востоку (соответственно) от А. Верно ли, что В и С находятся на одинаковом
Слайд 12

III. Решение практических задач. (Задания написаны на карточках) 1. Населённые пункты A, B, C, D расположены так, что пункт А находится в нескольких километрах к югу от D, а пункты В и С – на одинаковых расстояниях к западу и востоку (соответственно) от А. Верно ли, что В и С находятся на одинаковом расстоянии от D?

Решение задачи №1: Треугольники DAB и DAC равны по двум катетам, значит, BD = CD. D В А С ОТВЕТ: верно
Слайд 13

Решение задачи №1: Треугольники DAB и DAC равны по двум катетам, значит, BD = CD. D В А С ОТВЕТ: верно

2. Жители трёх домов (A, B. C) , расположенных в вершинах равнобедренного прямоугольного треугольника хотят выкопать общий колодец с таким расчётом, чтобы он был одинаково удалён от всех домов. В каком месте надо копать?
Слайд 14

2. Жители трёх домов (A, B. C) , расположенных в вершинах равнобедренного прямоугольного треугольника хотят выкопать общий колодец с таким расчётом, чтобы он был одинаково удалён от всех домов. В каком месте надо копать?

Решение задачи №2 Копать надо в точке О. В А O C
Слайд 15

Решение задачи №2 Копать надо в точке О. В А O C

Задачи Фалеса: а) Египтяне задали Фалесу трудную задачу: найти высоту одной из громадных пирамид. Фалес нашёл для этой задачи простое и красивое решение. Он воткнул в землю вертикально длинную палку и сказал: «Когда тень от этой палки будет той же длины, что и сама палка, тень от пирамиды будет имет
Слайд 16

Задачи Фалеса: а) Египтяне задали Фалесу трудную задачу: найти высоту одной из громадных пирамид. Фалес нашёл для этой задачи простое и красивое решение. Он воткнул в землю вертикально длинную палку и сказал: «Когда тень от этой палки будет той же длины, что и сама палка, тень от пирамиды будет иметь ту же длину, что и высота пирамиды.

РЕШЕНИЕ ЗАДАЧИ A A, C C, B Треугольник АСВ – равнобедренный АС = СВ Треугольник А1С1В – равнобедренный А1С1 = С1В.
Слайд 17

РЕШЕНИЕ ЗАДАЧИ A A, C C, B Треугольник АСВ – равнобедренный АС = СВ Треугольник А1С1В – равнобедренный А1С1 = С1В.

б) Ещё одно из свойств прямоугольного треугольника, доказанное Фалесом. Нарисуем прямоугольный треугольник АВС и разделим его гипотенузу АС точкой О пополам. Как вы думаете, какой отрезок длиннее: АО или ОВ? То есть куда ближе идти из середины гипотенузы – к острому углу или к прямому?
Слайд 18

б) Ещё одно из свойств прямоугольного треугольника, доказанное Фалесом. Нарисуем прямоугольный треугольник АВС и разделим его гипотенузу АС точкой О пополам. Как вы думаете, какой отрезок длиннее: АО или ОВ? То есть куда ближе идти из середины гипотенузы – к острому углу или к прямому?

РЕШЕНИЕ ЗАДАЧИ А D o C B Достроим треугольник АСВ до прямоугольника ADBC. AB = DC и точка О – середина каждого из них. Следовательно, АО = ОВ = ОС.
Слайд 19

РЕШЕНИЕ ЗАДАЧИ А D o C B Достроим треугольник АСВ до прямоугольника ADBC. AB = DC и точка О – середина каждого из них. Следовательно, АО = ОВ = ОС.

IV. Компьютерная презентация. Биография Фалеса. Существовало предание, что Фалес был финикийцем, ставший гражданином Милета. Фалес Милетский жил в самом конце VII - первой половине VI в. до н. э. (с. 625 – 548 до н. э.). Фалес Милетский был уроженцем греческого торгового города Милета, расположенног
Слайд 20

IV. Компьютерная презентация. Биография Фалеса

Существовало предание, что Фалес был финикийцем, ставший гражданином Милета. Фалес Милетский жил в самом конце VII - первой половине VI в. до н. э. (с. 625 – 548 до н. э.). Фалес Милетский был уроженцем греческого торгового города Милета, расположенного в Малой Азии на берегу Эгейского моря. В VI веке до н. э. Милет находился в расцвете славы. Это был многолюдный и шумный город купцов, торговцев, ремесленников, мореплавателей. Жемчужиной Эллады называли его и греки, и чужестранцы. Как рассказывают древние историки, в четырёх гаванях города встречались корабли, прибывшие из Сирии, Финикии, Египта, Крита. Главная гавань называлась Львиной. Узкий вход в неё охраняли два огромных мраморных льва. На широкой набережной толпились носильщики, матросы, менялы, проводники. Вся эта шумная толпа набрасывалась на чужеземцев, прибывших в Милет, предлагая услуги. От огромных ворот порта с шестнадцатью мраморными кодонами вела в город широкая главная улица. Милет – родина Фалеса. Неподалёку от ворот стоял величественный храм Аполлона с мраморными жертвенниками и статуями. Но купцов, прибывших из разных стран в Милет, привлекали не только красоты города. Тончайшая шерсть из милетских овец славилась всюду. Садоводы Милета выводили прекрасные сорта роз. Из лепестков роз изготовляли драгоценное розовое масло. Окрестности города утопали в густых оливковых садах. В далёкие путешествия отправлялись милетские торговцы-моряки. Эти путешествия были опасны. Порой приходилось бороться с разбушевавшейся стихией, обороняться от пиратов, а при высадке на сушу отражать нападения туземцев. Но не только мужества требовала жизнь от тогдашних мореплавателей. Она требовала ещё и умения ответить на многие вопросы. Как ориентироваться в море? Как определить расстояние от берега до корабля? Тесная зависимость жизненного успеха людей от решения теоретических вопросов привела к тому, что город Милет стал колыбелью античной науки, а учёный Фалес – её родоначальником. «Ищи что-нибудь одно мудрое, выбирай что-нибудь одно доброе, так ты уймёшь пустословие болтливых людей». Фалес был купцом. Он хорошо зарабатывал, умело торгуя оливковым маслом. Много путешествовал: посетил Египет, Среднюю Азию, халдею. Всюду изучал опыт, накопленный жрецами, ремесленниками и мореходами: познакомился с египетской и вавилонской школами математики и астрономии. Возвратившись на родину, Фалес отошел то торговли и посвятил свою жизнь занятиями наукой, окружив себя учениками, - так образовывалась милетская ионийская школа, из которой вышли многие знаменитые греческие учёные. Фалес дожил до глубокой старости.

Вклад в науку Фалес Милетский имел титул одного из семи мудрецов Греции, он был поистине первым философом, первым математиком, астрономом и вообще первым по всем наукам в Греции, -- он был тем же для Греции, чем Ломоносов для России. Карьеру он начал как купец и еще в молодости попал в Египет. В Еги
Слайд 21

Вклад в науку Фалес Милетский имел титул одного из семи мудрецов Греции, он был поистине первым философом, первым математиком, астрономом и вообще первым по всем наукам в Греции, -- он был тем же для Греции, чем Ломоносов для России. Карьеру он начал как купец и еще в молодости попал в Египет. В Египте Фалес застрял на много лет, изучая науки в Фивах и Мемфисе. Считается, что геометрию и астрономию в Грецию привез он. Во всяком случае, одному у него могут поучиться все философы – краткости. Полное собрание его сочинений, по преданию, составляло всего 200 стихов. Трудно сейчас сказать, что в научном перечне принадлежит действительно Фалесу и что приписано ему потомками, восхищающимися его гением. Несомненно, в лице Фалеса Греция впервые обрела одновременно философа математика и естествоиспытателя. Не случайно древние причислили его к «великолепной семёрке» мудрецов древности.

Фалес – математик Условно ему приписывают открытие доказательств ряда теорем: - о делении круга диаметром пополам; - о равенстве углов при основании равнобедренного треугольника; - о равенстве вертикальных углов; - один из признаков равенства прямоугольных треугольников и другое. Задачи Фалеса Фалес
Слайд 22

Фалес – математик Условно ему приписывают открытие доказательств ряда теорем: - о делении круга диаметром пополам; - о равенстве углов при основании равнобедренного треугольника; - о равенстве вертикальных углов; - один из признаков равенства прямоугольных треугольников и другое. Задачи Фалеса Фалес открыл любопытный способ определения расстояния от берега до видимого корабля. Доказательством признаков равенства треугольников занимались ещё пифагорейцы. По словам Прокла, Евдем Родосский приписывает Фалесу Милетскому доказательство теоремы о «равенстве» двух треугольников, имеющих равными сторону и два прилежащих к ней угла (второй признак равенства треугольников). Одни источники утверждают, что для этого им был использован признак подобия треугольников. Потомки Фалеса обязаны ему тем, что он, пожалуй впервые ввел в науку, и в частности – в математику, доказательство. Известно сейчас, что многие математические правила были открыты много раньше, чем в Греции. Но все – опытным путём. Строго логическое доказательство правильности каких-либо предложений на основании общих приложений, принятых за достоверные истины, было изобретено греками. Характерная и совершенно новая черта греческой математики заключается в постепенном переходе при помощи доказательства от одного предложения к другому. Именно такой характер математике придал Фалес. И даже сегодня, через 25 веков, приступая к доказательству, например, теоремы о свойствах ромба, вы, в сущности, рассуждаете почти так, как это делали ученики Фалеса.

Домашнее задание: придумать и решить практическую задачу, в которой были бы использованы свойства или признаки равенства прямоугольных треугольников
Слайд 23

Домашнее задание: придумать и решить практическую задачу, в которой были бы использованы свойства или признаки равенства прямоугольных треугольников

Спасибо за урок
Слайд 24

Спасибо за урок

Список похожих презентаций

1 признак равенства треугольников

1 признак равенства треугольников

Цели урока:. ввести понятие теоремы и доказательства теоремы; доказать первый признак равенства треугольников; научиться решать задачи на первый признак ...
"Треугольник. Первый признак равенства треугольников",

"Треугольник. Первый признак равенства треугольников",

Работаем по плану:. Треугольник. определение; периметр; равные треугольники. Теорема. Первый признак равенства треугольников. Выбери треугольники. ...
«Признаки равенства треугольников»

«Признаки равенства треугольников»

1.Цели и задачи занятия 2.Практическая работа 3.Таблица признаков равенства треугольников 4.Решение задач. Цели и задачи. 1. Усвоение материала через ...
«Решение задач по математике»

«Решение задач по математике»

10 февраля. В классе. Задача условие вопрос решение ответ. Быстро и правильно считать. Правильно записывать решение задачи. Кричать и сердиться, когда ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
I Функция У=АХ², её график и свойства

I Функция У=АХ², её график и свойства

А=1 У=Х ². А=2 У=2Х ². У=Х² У=2Х². Растяжение от оси Х в два раза. А=0.5 У=Х² У=0.5Х². Сжатие по оси Х в два раза. Вообще график функции У=АХ² можно ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
«Параллельность прямых и плоскостей»

«Параллельность прямых и плоскостей»

ABCD – трапеция, AD , E и F – середины AB и CD соответственно. Докажите, что EF ǁ α. α. α. α. α. A B C D α. Через вершины А и С параллелограмма ABCD ...
Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
Cинус, косинус, тангенс и котангенс угла

Cинус, косинус, тангенс и котангенс угла

Тест. Синус угла А равен: а) 4/5; б) 3/5; в) 4/3 2.Тангенс угла В равен: а) 4/3; б) 3/5; в)¾ 3.Косинус. равен : а) б) ½; в). 4. Упростить выражение:. ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
«Решение задач с помощью пропорций»

«Решение задач с помощью пропорций»

Найти значение Х: Х:3=4:6 5:Х=2:6 7:3=Х:18 Устная работа. Указать вид пропорциональной зависимости:. Какова зависимость пути от времени? Какова зависимость ...
«Решение задания С1 ЕГЭ по информатике и ИКТ»

«Решение задания С1 ЕГЭ по информатике и ИКТ»

2 балла. Решение задания С1 ЕГЭ по информатике и ИКТ.  Кунина В.В. область I  область II. 0 x y y = x+2 y2 + x2 = 25 y2 + x2  25 y  0 x  0 область ...
«Математический бой. Через тернии к звездам»

«Математический бой. Через тернии к звездам»

. Разминка. Сколько разных букв в названии нашей страны? 5 букв. ДВЕНАДЦАТЬ. К семи прибавить пять. Как правильно записать: одиннадцать или адиннадцать? ...

Конспекты

I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Конспект урока математики в 10 классе. Жирнова С.В. учитель математики. Тема урока:. «Арифметический квадратный корень и его свойства». Тип урока. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Web -разработка. Применение производной.10 класс

Web -разработка. Применение производной.10 класс

ТЕХНОЛОГИЧЕСКАЯ КАРТА КОНСТРУИРОВАНИЯ УРОКА С ИСПОЛЬЗОВАНИЕ СРЕДСТВ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ. Учитель Беломестнова Наталья Петровна. Предмет, ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Урок - повторение по теме: «Арифметический квадратный корень и его свойства». . . Учитель Переверзева М.В. МБОУСОШ «11. . Цель: подвести итоги ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Тема урока:. «Арифметическая и геометрическая прогрессии». . Цель урока:. Систематизировать и обобщить знания учащихся по теме «Арифметическая и ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Тема: Арифметическая и геометрическая прогрессии. Тип урока:. урок обобщения и систематизации знаний. Цель:. актуализация имеющиеся знания ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ. . СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1918. . Конспект урока по алгебре ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:7 мая 2018
Категория:Математика
Классы:
Содержит:24 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации