- Производная функции. Геометрический смысл производной

Презентация "Производная функции. Геометрический смысл производной" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "Производная функции. Геометрический смысл производной" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

Производная функции. Геометрический смысл производной.
Слайд 1

Производная функции. Геометрический смысл производной.

Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.
Слайд 2

Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

Производная. — это скорость изменения функции.
Слайд 3

Производная

— это скорость изменения функции.

На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?
Слайд 4

На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года: Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции,
Слайд 5

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем? На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное знач
Слайд 6

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.
Слайд 7

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции.

Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.

В качестве угла наклона мы берем угол между касательной и положительным направлением оси OX
Слайд 8

В качестве угла наклона мы берем угол между касательной и положительным направлением оси OX

Проходящую через точку (x0;f (x0;)) прямую, с отрезком которой практически сливается график функции f при значениях х, близких к х0, называют касательной к графику функции f в точке (х0; f (х0)).
Слайд 9

Проходящую через точку (x0;f (x0;)) прямую, с отрезком которой практически сливается график функции f при значениях х, близких к х0, называют касательной к графику функции f в точке (х0; f (х0)).

Найдем k=tg α. С помощью графика мы нашли производную, не зная формулы функции. (В 8)
Слайд 10

Найдем k=tg α

С помощью графика мы нашли производную, не зная формулы функции. (В 8)

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная функции равна тангенсу угла наклона касательной.
Слайд 11

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Производная функции равна тангенсу угла наклона касательной.

У одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции. На одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. Кроме того у этой функции есть точки максимума и минимума.
Слайд 12

У одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

На одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. Кроме того у этой функции есть точки максимума и минимума.

В точке А функция возрастает. Касательная образует острый угол с положительным направлением оси ОХ. Значит производная положительна. В точке В функция убывает. Касательная образует тупой угол с положительным направлением оси ОХ. Значит производная отрицательна. Если функция возрастает – ее производн
Слайд 13

В точке А функция возрастает. Касательная образует острый угол с положительным направлением оси ОХ.

Значит производная положительна.

В точке В функция убывает. Касательная образует тупой угол с положительным направлением оси ОХ.

Значит производная отрицательна.

Если функция возрастает – ее производная положительна, если убывает, то отрицательна.

В точках максимума и минимума касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю. Точка C— точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса»
Слайд 14

В точках максимума и минимума касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю. Точка C— точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус». В точке D — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Производная функции. Геометрический смысл производной Слайд: 15
Слайд 15
Возможен случай, когда производная в какой-то точке равна нулю, но в этой точке она не меняет знак. В точке Е нет ни максимума, ниминимума. Это точка перегиба.
Слайд 16

Возможен случай, когда производная в какой-то точке равна нулю, но в этой точке она не меняет знак. В точке Е нет ни максимума, ниминимума. Это точка перегиба.

В точке Е – точке максимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.
Слайд 17

В точке Е – точке максимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

Список похожих презентаций

Геометрический смысл производной функции

Геометрический смысл производной функции

Рано или поздно всякая правильная математическая идея находит применение в том или ином деле. А.Н.Крылов. Цель урока. 1) выяснить, в чем состоит геометрический ...
Физический и геометрический смыслы производной. Уравнение касательной к графику функции

Физический и геометрический смыслы производной. Уравнение касательной к графику функции

Цели урока:. • Проверить умения применять формулы и правила вычисления производных. Знать физический и геометрический смысл производной, уравнений ...
Физический и геометрический смысл производной

Физический и геометрический смысл производной

Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:. Производная ...
Геометрический смысл производной

Геометрический смысл производной

Геометрическая интерпретация производной, впервые данная в конце XVII в. Лейбницем, который основываясь на результатах Ферма и некоторых других выводах, ...
Построение графика функции методом ее исследования с помощью производной

Построение графика функции методом ее исследования с помощью производной

доцент кафедры математического образования Батан Любовь Федоровна. учитель математики первой квалификационной категории МОУ лицей № 176 Ткаченко Зоя ...
Физический смысл производной

Физический смысл производной

f ' (x0) = lim (∆ f / ∆x) ∆x→ 0. Пусть х - произвольная точка, лежащая в некоторой окрестности точки Х0 (окрестность точки Х0 - это интервал (а; b), ...
Понятие производной функции

Понятие производной функции

Автор Сизова Н. В., г. Саров. Производная. Историческая справка. Тайны планетных орбит. Древнегреческие учёные умели решать немногие задачи кинематики ...
«Применение производной для исследования функции»

«Применение производной для исследования функции»

Справимся легко! №1. По графику функции y=f(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько ...
Производная функции

Производная функции

Задание № 1. 1. На рисунке изображен график функции y=f(x) и касательная к нему в точке с абсциссой х0 Найдите значение производной в точке х0 1) ...
Понятие о производной функции

Понятие о производной функции

Цели урока:. ОБУЧАЮЩАЯ : 1) Ввести определение производной функции на основе задач физики, рассматривая при этом физический смысл производной; 2) ...
Вычисление производной функции

Вычисление производной функции

При вычислении производной функции, будем иметь в виду, что один из способов найти производную - это взять достаточно малые значения справа и слева ...
Производная функции в точке

Производная функции в точке

Вопросы теории. 1. Что называется производной функции f(x) в точке х? 2. В чем состоит геометрический смысл производной? 3.Сформулировать правила ...
Производная функции

Производная функции

Проблемный вопрос. Можно ли находить производные, не используя определение? Существуют ли более удобные способы? Цели и задачи. Научиться находить ...
Геометрический смысл модуля действительного числа

Геометрический смысл модуля действительного числа

Расстояние от a до b равно. х a b b-a, если b>a a-b, если a>b 0, если a=b ρ(a,b)=|a-b|. Все три случая охватываются одной формулой:. решим уравнения:. ...
Производная функции

Производная функции

Определение производной. Пусть функция y = f(x) определена в некотором интервале (a; b). Аргументу x придадим некоторое приращение :. х f(x ) x+Δx ...
Производная сложной функции

Производная сложной функции

Производная сложной функции. Сложная функция. Производная простой функции. Простая функция. Пример:. . . . ...
Применение производной для исследования функции на монотонность и экстремумы

Применение производной для исследования функции на монотонность и экстремумы

Х У 0 касательная α. k – угловой коэффициент прямой (касательной). Геометрический смысл производной: если к графику функции y = f(x) в точке с абсциссой ...
Определение производной от функции

Определение производной от функции

Определение производной функции (Содержание). Геометрический смысл отношения Геометрический смысл отношения при Геометрический смысл производной функции ...
Урок производная сложной функции

Урок производная сложной функции

Найдите производные функций:. Найдите угловой коэффициент касательной, проведенной к графику функции. в его точке с абсциссой. Точка движется прямолинейно ...

Конспекты

Производная. Геометрический смысл производной. Применение производной к исследованию функции. Задачи В-8

Производная. Геометрический смысл производной. Применение производной к исследованию функции. Задачи В-8

Государственное общеобразовательное учреждение. Гимназия №205. Урок по теме. « Производная. Геометрический смысл производной. Применение ...
Понятие о производной функции. Ее геометрический и физический смысл

Понятие о производной функции. Ее геометрический и физический смысл

Дата. . Класс. . Предмет. . . 14.11.2013. . . 11. . Алгебра и начала анализа. . . . Тема урока:. Понятие о производной ...
Производная.Геометрический и физический смысл производной

Производная.Геометрический и физический смысл производной

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 17 село Краснопартизанское. Урок разноуровневого ...
Производная Геометрический и физический смысл производной

Производная Геометрический и физический смысл производной

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 17 село Краснопартизанское. Урок по алгебре. для ...
Производная. Геометрический и механический смысл производной

Производная. Геометрический и механический смысл производной

Тема. . Производная. Геометрический и механический смысл производной. . . Цель. .  Повторить, о. бобщить и систематизировать материал по ...
Геометрический смысл производной

Геометрический смысл производной

Тема: Геометрический смысл производной (В8 и В14 в ЕГЭ). Цель урока:. . Выяснить, в чем состоит геометрический смысл производной, уравнения касательной ...
Геометрический смысл производной

Геометрический смысл производной

Открытый урок по теме:. «Геометрический смысл производной». Цели урока. : дать понятие углового коэффициента прямой, определение угла между прямой ...
Геометрический и физический смысл производной. Применение производной

Геометрический и физический смысл производной. Применение производной

Учитель математики. КГУ «Экономический лицей». Воробьева. Ирина. Юрьевна. Методическая разработка. урока математики в 10 классе. « Геометрический ...
Геометрический смысл производной. Применение производной к исследованию функций

Геометрический смысл производной. Применение производной к исследованию функций

Урок- консультация по теме «Геометрический смысл производной. Применение производной к исследованию функций». Цель урока. :. содействовать созданию ...
Производная. Физический и геометрический смыл производной

Производная. Физический и геометрический смыл производной

Лебедева Ирина Анатольевна, учитель математики МБОУ Новобатайская СОШ №9. . Тема «Производная. Физический и геометрический смыл производной». ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:12 августа 2019
Категория:Математика
Содержит:17 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации