- Способы решения квадратных уравнений

Презентация "Способы решения квадратных уравнений" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10

Презентацию на тему "Способы решения квадратных уравнений" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Решение квадратных уравнений. Алгебра 8 класс Фадеева Светлана Виссарионовна МОУ Кожважская основная общеобразовательная школа
Слайд 1

Решение квадратных уравнений

Алгебра 8 класс Фадеева Светлана Виссарионовна МОУ Кожважская основная общеобразовательная школа

Квадратные уравнения. Определение Классификация Способы решения Биквадратные уравнения Биография Виета
Слайд 2

Квадратные уравнения

Определение Классификация Способы решения Биквадратные уравнения Биография Виета

Определение. Квадратным уравнением называется уравнение вида ax2+bx+c=0, где a, b, с – заданные числа, a≠0, x – неизвестное. Числа a, b, c носят следующие названия: a - первый коэффициент, b - второй коэффициент, с - свободный член. Квадратные уравнения Дальше
Слайд 3

Определение

Квадратным уравнением называется уравнение вида ax2+bx+c=0, где a, b, с – заданные числа, a≠0, x – неизвестное. Числа a, b, c носят следующие названия: a - первый коэффициент, b - второй коэффициент, с - свободный член. Квадратные уравнения Дальше

Классификация. Полные: ax2+bx+c=0, где коэффициенты b и с отличны от нуля; Решение Неполные: ax2+bx=0, ax2+c=0 или ax2=0 т.е. хотя бы один из коэффициентов b или c равен нулю; Решение Приведенные: x2+bx+c=0, т.е. уравнение, первый коэффициент которого равен единице (а=1). Решение Квадратные уравнени
Слайд 4

Классификация

Полные: ax2+bx+c=0, где коэффициенты b и с отличны от нуля; Решение Неполные: ax2+bx=0, ax2+c=0 или ax2=0 т.е. хотя бы один из коэффициентов b или c равен нулю; Решение Приведенные: x2+bx+c=0, т.е. уравнение, первый коэффициент которого равен единице (а=1). Решение Квадратные уравнения Способы решения

Способы решения. Решение полных квадратных уравнений Решение неполных квадратных уравнений Решение приведенного квадратного уравнения Решение биквадратных уравнений Квадратные уравнения
Слайд 5

Способы решения

Решение полных квадратных уравнений Решение неполных квадратных уравнений Решение приведенного квадратного уравнения Решение биквадратных уравнений Квадратные уравнения

Решение полных квадратных уравнений. По формуле корней квадратного уравнения: ax2+bx+c=0, , где D=b2-4ac Выражение b2-4ac называется дискриминантом квадратного уравнения При D>0 - 2 корня, при D=0 - 1 корень, при D
Слайд 6

Решение полных квадратных уравнений

По формуле корней квадратного уравнения: ax2+bx+c=0, , где D=b2-4ac Выражение b2-4ac называется дискриминантом квадратного уравнения При D>0 - 2 корня, при D=0 - 1 корень, при D<0 - нет корней Квадратные уравнения Способы решения

Решение неполных квадратных уравнений. 1.	ax2+bx=0 x(ax+b)=0 x1=0, ax+b=0 ax=-b x2=-b/a Квадратные уравнения. 2.	ax2+c=0 ax2=-c x2=-c/a 3.	ax2=0 x2=0 x1.2=0 Способы решения
Слайд 7

Решение неполных квадратных уравнений

1. ax2+bx=0 x(ax+b)=0 x1=0, ax+b=0 ax=-b x2=-b/a Квадратные уравнения

2. ax2+c=0 ax2=-c x2=-c/a 3. ax2=0 x2=0 x1.2=0 Способы решения

Решение приведенного квадратного уравнения. 1.По формуле корней квадратного уравнения 2. Метод выделения полного квадрата Пример. x2+2x-3=0 x2+2x=3, x2+2x+1=3+1 (x+1)2=4 x+1=2 или x+1=-2 x1=1, x2=-3 Квадратные уравнения. 3. По теореме обратной теореме Виета x2+bx+c=0 х1+х2=-b, x1×x2=c. Биография Вие
Слайд 8

Решение приведенного квадратного уравнения

1.По формуле корней квадратного уравнения 2. Метод выделения полного квадрата Пример. x2+2x-3=0 x2+2x=3, x2+2x+1=3+1 (x+1)2=4 x+1=2 или x+1=-2 x1=1, x2=-3 Квадратные уравнения

3. По теореме обратной теореме Виета x2+bx+c=0 х1+х2=-b, x1×x2=c. Биография Виета Способы решения

Решение биквадратного уравнения. Определение: уравнение вида ax4+bx2+c=0 называют биквадратным. Пример. 9x4+5x2-4=0 Обозначим x2=t. Тогда данное уравнение примет вид 9t2+5t-4=0 Откуда t1=9/4, t2=-1. Уравнение x2=4/9 имеет корни x1=2/3, x2=-2/3 , а уравнение x2=-1 не имеет действительных корней. Квад
Слайд 9

Решение биквадратного уравнения

Определение: уравнение вида ax4+bx2+c=0 называют биквадратным. Пример. 9x4+5x2-4=0 Обозначим x2=t. Тогда данное уравнение примет вид 9t2+5t-4=0 Откуда t1=9/4, t2=-1. Уравнение x2=4/9 имеет корни x1=2/3, x2=-2/3 , а уравнение x2=-1 не имеет действительных корней. Квадратные уравнения Способы решения

Биография Виета. Франсуа Виет родился в 1540 году в городе Фонтене ле-Конт провинции Пуату. Получив юридическое образование, он в 19 лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. В
Слайд 10

Биография Виета

Франсуа Виет родился в 1540 году в городе Фонтене ле-Конт провинции Пуату. Получив юридическое образование, он в 19 лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и, отчасти, благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником Генриха III, а после его смерти - Генриха IV. В последние годы жизни Виет занимал важные посты при дворе короля Франции. Умер он в Париже в самом начале семнадцатого столетия. Есть подозрения, что он был убит. Франсуа Виет родился в 1540 году в городе Фонтене ле-Конт провинции Пуату. Получив юридическое образование, он в 19 лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и, отчасти, благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником Генриха III, а после его смерти - Генриха IV. В последние годы жизни Виет занимал важные посты при дворе короля Франции. Умер он в Париже в самом начале семнадцатого столетия. Есть подозрения, что он был убит. Квадратные уравнения Способы решения

Список похожих презентаций

Различные способы решения квадратных уравнений

Различные способы решения квадратных уравнений

Человеку, изучающему алгебру, часто полезнее решить одну задачу тремя различными способами, чем решать три-четыре различные задачи. Решая одну задачу ...
Приёмы решения квадратных уравнений

Приёмы решения квадратных уравнений

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени ...
10 способов решения квадратных уравнений

10 способов решения квадратных уравнений

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х2+Х=3/4 Х2-Х=14,5. Как составлял и решал Диофант квадратные уравнения. ...
Виды показательных уравнений и способы их решения

Виды показательных уравнений и способы их решения

Умные мысли. Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует для данного ...
Методы решения квадратных уравнений

Методы решения квадратных уравнений

Проверим знания определений, формул и формулировок правил, которые необходимо знать для успешного усвоения темы и умений решать квадратные уравнения. ...
Общие методы решения квадратных уравнений

Общие методы решения квадратных уравнений

При решении квадратных уравнений часто применяется метод разложения на множители (с помощью вынесения за скобки общего множителя, формул сокращенного ...
Методы решения квадратных уравнений

Методы решения квадратных уравнений

Определение. Квадратные уравнения (КВУР) – уравнения вида ax²+bx+c=0, где x – переменная, a, b и c – любые числа, причем a≠0. (В случае, когда а = ...
Нестандартные приёмы решения квадратных уравнений

Нестандартные приёмы решения квадратных уравнений

Перечень тем сообщений. Как решали квадратные уравнения в древности. Общие методы решения квадратных уравнений. Специальные методы решения квадратных ...
Пять графических  способов решения квадратных уравнений

Пять графических способов решения квадратных уравнений

Цель урока:. Применение навыков построения графиков функций при решении квадратных уравнений. План урока. Актуализация знаний. Новый материал: 5 способов ...
Графический способ решения квадратных уравнений

Графический способ решения квадратных уравнений

Графический способ решения уравнений. Решить графически уравнение. Ответ: х=-3 или х=1. Самостоятельная работа. 1. Постройте график функции и укажите ...
Виды квадратных уравнений

Виды квадратных уравнений

гипотеза. Каждый человек, особенно если он ученик 8 класса, может решить квадратное уравнение, если знает ответы на вопросы…. вопросы... Определение ...
В мире квадратных уравнений

В мире квадратных уравнений

Оглавление. Введение Заметки прошлого Основные понятия Теорема Виета Способы решения квадратного уравнения. Математика — основа точных наук. На первый ...
Блок-схема для решения квадратных неравенств

Блок-схема для решения квадратных неравенств

Неравенства второй степени вида. D. D=0 x=m m. D>0 m n. . . . . . . . Нет решения. . . . . . . . . Тренажер. решение квадратных неравенств. Варианты ...
Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
Аналитические методы решения логарифмических уравнений

Аналитические методы решения логарифмических уравнений

Цели урока:. Обобщить и систематизировать изученные методы решения логарифмических уравнений Выявить особенности каждого метода Выяснить, всегда ли ...
Показательные уравнения и способы их решения

Показательные уравнения и способы их решения

Определение: Показательные уравнения – уравнения, в которых переменная входит только в показатели степеней при постоянных основаниях. Например,. Основные ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
Графический метод решения систем уравнений с двумя переменными

Графический метод решения систем уравнений с двумя переменными

Обобщить графический способ решения систем уравнений; Сформировать умения графи-чески решать системы уравне-ний второй степени, привлекая известные ...
Решение неполных квадратных уравнений

Решение неполных квадратных уравнений

Найдите корни уравнения. . . . . . . . ...
Параллельные методы решения систем линейных уравнений

Параллельные методы решения систем линейных уравнений

Н.Новгород, 2005 г. Основы параллельных вычислений: Матричное умножение © Гергель В.П. 2 из 44. Постановка задачи Метод Гаусса Последовательный алгоритм ...

Конспекты

Рациональные способы решения квадратных уравнений

Рациональные способы решения квадратных уравнений

ПРОБЛЕМНОЕ ОБУЧЕНИЕ. РАЗВИТИЕ ПОЗНАВАТЕЛЬНЫХ СПОСОБНОСТЕЙ. В ходе урока учащиеся знакомятся с нестандартными (не входящими в программу) способами ...
Различные способы решения квадратных уравнений

Различные способы решения квадратных уравнений

Тема : Различные способы решения квадратных уравнений. Цель:. научиться решать квадратные уравнение различных видов Задачи:. . . Обобщить знания ...
Нестандартные способы решения уравнений

Нестандартные способы решения уравнений

Муниципальное общеобразовательное учреждение. Шенталинская средняя общеобразовательная школа № 1 «Образовательный центр» муниципального района Шенталинский ...
Нестандартные приемы решения квадратных уравнений

Нестандартные приемы решения квадратных уравнений

. Тема урока:. . Нестандартные приемы решения квадратных уравнений. Цели урока:. Образовательная. – познакомить учащихся с нестандартными. ...
Методы решения квадратных уравнений

Методы решения квадратных уравнений

Организационная информация. . . Тема урока. . Квадратные уравнения: методы решения. . . Предмет. . Алгебра. . . Класс. ...
Нестандартные способы решения показательных и логарифмических уравнений и неравенств

Нестандартные способы решения показательных и логарифмических уравнений и неравенств

Тема: Нестандартные способы решения. показательных и логарифмических уравнений. и неравенств.(11 класс). Капацына Людмила Константиновна, СШЛ №23 ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

. . . . . . Урок алгебры по теме. «Графический способ решения систем. уравнений». Автор: Гаврилова Ирина Николаевна. Учитель математики ...
Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

МБОУ «Гимназия №3». Конспект урока по математике в 8 классе на тему:. Учитель математики 1 кв.категории:. . Назарова ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

Управление образования. администрации Павловского района. Проект урока. Предмет алгебра. класс 8 В. Тема. Графическое решение ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:18 июня 2019
Категория:Математика
Содержит:10 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации