- 10 способов решения квадратных уравнений

Презентация "10 способов решения квадратных уравнений" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "10 способов решения квадратных уравнений" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

10 способов решения квадратных уравнений. 2 3 4 5 6 7 8 9
Слайд 1

10 способов решения квадратных уравнений

2 3 4 5 6 7 8 9

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х2+Х=3/4 Х2-Х=14,5
Слайд 2

История развития квадратных уравнений.

Квадратные уравнения в Древнем Вавилоне: Х2+Х=3/4 Х2-Х=14,5

Как составлял и решал Диофант квадратные уравнения. Отсюда уравнение: (10+х)(10-х) =96 или же: 100 - х2 =96 х2 - 4=0 (1). Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.
Слайд 3

Как составлял и решал Диофант квадратные уравнения. Отсюда уравнение: (10+х)(10-х) =96 или же: 100 - х2 =96 х2 - 4=0 (1)

Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1)
Слайд 4

Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1)

Квадратные уравнения у ал – Хорезми. 1) «Квадраты равны корнями», т.е. ах2 + с = bх. 2) «Квадраты равны числу», т.е. ах2 = с. 3) «Корни равны числу», т.е. ах = с. 4) «Квадраты и числа равны корням», т.е. ах2 + с = bх. 5) «Квадраты и корни равны числу», т.е. ах2 + bx = с. 6) «Корни и числа равны квад
Слайд 5

Квадратные уравнения у ал – Хорезми. 1) «Квадраты равны корнями», т.е. ах2 + с = bх. 2) «Квадраты равны числу», т.е. ах2 = с. 3) «Корни равны числу», т.е. ах = с. 4) «Квадраты и числа равны корням», т.е. ах2 + с = bх. 5) «Квадраты и корни равны числу», т.е. ах2 + bx = с. 6) «Корни и числа равны квадратам», т.е. bx + с = ах2.

Квадратные уравнения в Европе ХIII - ХVII вв. х2 +bх = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Слайд 6

Квадратные уравнения в Европе ХIII - ХVII вв. х2 +bх = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

О теореме Виета. «Если В + D, умноженное на А - А2, равно ВD, то А равно В и равно D». На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b)х - х2 = ab, т.е. х2 - (а + b)х + аb = 0, то х1 = а, х2 = b.
Слайд 7

О теореме Виета. «Если В + D, умноженное на А - А2, равно ВD, то А равно В и равно D». На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b)х - х2 = ab, т.е. х2 - (а + b)х + аb = 0, то х1 = а, х2 = b.

Способы решения квадратных уравнений. 1. СПОСОБ: Разложение левой части уравнения на множители. Решим уравнение х2 + 10х - 24 = 0. Разложим левую часть на множители: х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2). Следовательно, уравнение можно переписать так: (х + 12)(
Слайд 8

Способы решения квадратных уравнений.

1. СПОСОБ: Разложение левой части уравнения на множители. Решим уравнение х2 + 10х - 24 = 0. Разложим левую часть на множители: х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2). Следовательно, уравнение можно переписать так: (х + 12)(х - 2) = 0 Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х - 24 = 0.

2. СПОСОБ: Метод выделения полного квадрата. Решим уравнение х2 + 6х - 7 = 0. Выделим в левой части полный квадрат. Для этого запишем выражение х2 + 6х в следующем виде: х2 + 6х = х2 + 2• х • 3. полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По это
Слайд 9

2. СПОСОБ: Метод выделения полного квадрата. Решим уравнение х2 + 6х - 7 = 0. Выделим в левой части полный квадрат. Для этого запишем выражение х2 + 6х в следующем виде: х2 + 6х = х2 + 2• х • 3. полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х2 + 2• х • 3 + 32 = (х + 3)2. Преобразуем теперь левую часть уравнения х2 + 6х - 7 = 0, прибавляя к ней и вычитая 32. Имеем: х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16. Таким образом, данное уравнение можно записать так: (х + 3)2 - 16 =0, (х + 3)2 = 16. Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.

3. СПОСОБ: Решение квадратных уравнений по формуле. Умножим обе части уравнения ах2 + bх + с = 0, а ≠ 0 на 4а и последовательно имеем: 4а2х2 + 4аbх + 4ас = 0, ((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0, (2ax + b)2 = b2 - 4ac, 2ax + b = ± √ b2 - 4ac, 2ax = - b ± √ b2 - 4ac,
Слайд 10

3. СПОСОБ: Решение квадратных уравнений по формуле. Умножим обе части уравнения ах2 + bх + с = 0, а ≠ 0 на 4а и последовательно имеем: 4а2х2 + 4аbх + 4ас = 0, ((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0, (2ax + b)2 = b2 - 4ac, 2ax + b = ± √ b2 - 4ac, 2ax = - b ± √ b2 - 4ac,

4. СПОСОБ: Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х2 + px + c = 0. (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x1 x2 = q, x1 + x2 = - p а) x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3  0
Слайд 11

4. СПОСОБ: Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х2 + px + c = 0. (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x1 x2 = q, x1 + x2 = - p а) x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 0 и p= 8 > 0. б) x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 0; x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9

5. СПОСОБ: Решение уравнений способом «переброски». Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. Умножая обе его части на а, получаем уравнение а2х2 + аbх + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найде
Слайд 12

5. СПОСОБ: Решение уравнений способом «переброски». Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. Умножая обе его части на а, получаем уравнение а2х2 + аbх + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1 = у1/а и х1 = у2/а.

• Пример. Решим уравнение 2х2 – 11х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у2 – 11у + 30 = 0. Согласно теореме Виета у1 = 5 х1 = 5/2 x1 = 2,5 у2 = 6 x2 = 6/2 x2 = 3. Ответ: 2,5; 3.
Слайд 13

• Пример. Решим уравнение 2х2 – 11х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у2 – 11у + 30 = 0. Согласно теореме Виета у1 = 5 х1 = 5/2 x1 = 2,5 у2 = 6 x2 = 6/2 x2 = 3. Ответ: 2,5; 3.

6. СПОСОБ: Свойства коэффициентов квадратного уравнения. А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. 1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а. Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение x
Слайд 14

6. СПОСОБ: Свойства коэффициентов квадратного уравнения. А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0. 1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а. Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение x2 + b/a • x + c/a = 0. Согласно теореме Виета x1 + x2 = - b/a, x1x2 = 1• c/a. По условию а – b + с = 0, откуда b = а + с. Таким образом, x1 + x2 = - а + b/a= -1 – c/a, x1x2 = - 1• ( - c/a), т.е. х1 = -1 и х2 = c/a, что и требовалось доказать.

Б. Если второй коэффициент b = 2k – четное число, то формулу корней. В. Приведенное уравнение х2 + рх + q= 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней
Слайд 15

Б. Если второй коэффициент b = 2k – четное число, то формулу корней

В. Приведенное уравнение х2 + рх + q= 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

7. СПОСОБ: Графическое решение квадратного уравнения. Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = - px - q. Построим графики зависимости у = х2 и у = - px - q.
Слайд 16

7. СПОСОБ: Графическое решение квадратного уравнения. Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = - px - q. Построим графики зависимости у = х2 и у = - px - q.

• Пример Решим графически уравнение х2 - 3х - 4 = 0 (рис. 2). Решение. Запишем уравнение в виде х2 = 3х + 4. Построим параболу у = х2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Ответ: х1 = - 1; х2 = 4
Слайд 17

• Пример Решим графически уравнение х2 - 3х - 4 = 0 (рис. 2). Решение. Запишем уравнение в виде х2 = 3х + 4. Построим параболу у = х2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Ответ: х1 = - 1; х2 = 4

8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и линейки. нахождения корней квадратного уравнения ах2 + bх + с = 0 с помощью циркуля и линейки (рис. 5). Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х1х2/ 1 = c/a.
Слайд 18

8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и линейки. нахождения корней квадратного уравнения ах2 + bх + с = 0 с помощью циркуля и линейки (рис. 5). Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х1х2/ 1 = c/a.

1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках (6,а рис. ) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0. 2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность ка
Слайд 19

1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках (6,а рис. ) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0. 2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 - корень квадратного уравнения. 3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

9. СПОСОБ: Решение квадратных уравнений с помощью номограммы. z2 + pz + q = 0. Криволинейная шкала номограммы построена по формулам (рис.11): Полагая ОС = р, ED = q, ОЕ = а (все в см.), Из подобия треугольников САН и CDF получим пропорцию
Слайд 20

9. СПОСОБ: Решение квадратных уравнений с помощью номограммы. z2 + pz + q = 0. Криволинейная шкала номограммы построена по формулам (рис.11): Полагая ОС = р, ED = q, ОЕ = а (все в см.), Из подобия треугольников САН и CDF получим пропорцию

• Примеры. 1) Для уравнения z2 - 9z + 8 = 0 номограмма дает корни z1 = 8,0 и z2 = 1,0 (рис.12). 2) Решим с помощью номограммы уравнение 2z2 - 9z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z2 - 4,5z + 1 = 0. Номограмма дает корни z1 = 4 и z2 = 0,5. 3) Для уравнения z2 - 25
Слайд 21

• Примеры. 1) Для уравнения z2 - 9z + 8 = 0 номограмма дает корни z1 = 8,0 и z2 = 1,0 (рис.12). 2) Решим с помощью номограммы уравнение 2z2 - 9z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z2 - 4,5z + 1 = 0. Номограмма дает корни z1 = 4 и z2 = 0,5. 3) Для уравнения z2 - 25z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение t2 - 5t + 2,64 = 0, которое решаем посредством номограммы и получим t1 = 0,6 и t2 = 4,4, откуда z1 = 5t1 = 3,0 и z2 = 5t2 = 22,0.

10. СПОСОБ: Геометрический способ решения квадратных уравнений. • Примеры. 1) Решим уравнение х2 + 10х = 39. В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15). Для искомой стороны х первоначального квадрата получим
Слайд 22

10. СПОСОБ: Геометрический способ решения квадратных уравнений. • Примеры. 1) Решим уравнение х2 + 10х = 39. В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15). Для искомой стороны х первоначального квадрата получим

у2 + 6у - 16 = 0. Решение представлено на рис. 16, где у2 + 6у = 16, или у2 + 6у + 9 = 16 + 9. Решение. Выражения у2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6у - 16 + 9 - 9 = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, и
Слайд 23

у2 + 6у - 16 = 0. Решение представлено на рис. 16, где у2 + 6у = 16, или у2 + 6у + 9 = 16 + 9. Решение. Выражения у2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6у - 16 + 9 - 9 = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = - 8 (рис.16).

Список похожих презентаций

Пять графических  способов решения квадратных уравнений

Пять графических способов решения квадратных уравнений

Цель урока:. Применение навыков построения графиков функций при решении квадратных уравнений. План урока. Актуализация знаний. Новый материал: 5 способов ...
Методы решения квадратных уравнений

Методы решения квадратных уравнений

Проверим знания определений, формул и формулировок правил, которые необходимо знать для успешного усвоения темы и умений решать квадратные уравнения. ...
Методы решения квадратных уравнений

Методы решения квадратных уравнений

Определение. Квадратные уравнения (КВУР) – уравнения вида ax²+bx+c=0, где x – переменная, a, b и c – любые числа, причем a≠0. (В случае, когда а = ...
Нестандартные приёмы решения квадратных уравнений

Нестандартные приёмы решения квадратных уравнений

Перечень тем сообщений. Как решали квадратные уравнения в древности. Общие методы решения квадратных уравнений. Специальные методы решения квадратных ...
Общие методы решения квадратных уравнений

Общие методы решения квадратных уравнений

При решении квадратных уравнений часто применяется метод разложения на множители (с помощью вынесения за скобки общего множителя, формул сокращенного ...
Приёмы решения квадратных уравнений

Приёмы решения квадратных уравнений

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени ...
Различные способы решения квадратных уравнений

Различные способы решения квадратных уравнений

Человеку, изучающему алгебру, часто полезнее решить одну задачу тремя различными способами, чем решать три-четыре различные задачи. Решая одну задачу ...
Графический способ решения квадратных уравнений

Графический способ решения квадратных уравнений

Графический способ решения уравнений. Решить графически уравнение. Ответ: х=-3 или х=1. Самостоятельная работа. 1. Постройте график функции и укажите ...
Виды показательных уравнений и способы их решения

Виды показательных уравнений и способы их решения

Умные мысли. Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует для данного ...
Виды квадратных уравнений

Виды квадратных уравнений

гипотеза. Каждый человек, особенно если он ученик 8 класса, может решить квадратное уравнение, если знает ответы на вопросы…. вопросы... Определение ...
В мире квадратных уравнений

В мире квадратных уравнений

Оглавление. Введение Заметки прошлого Основные понятия Теорема Виета Способы решения квадратного уравнения. Математика — основа точных наук. На первый ...
Блок-схема для решения квадратных неравенств

Блок-схема для решения квадратных неравенств

Неравенства второй степени вида. D. D=0 x=m m. D>0 m n. . . . . . . . Нет решения. . . . . . . . . Тренажер. решение квадратных неравенств. Варианты ...
Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
Аналитические методы решения логарифмических уравнений

Аналитические методы решения логарифмических уравнений

Цели урока:. Обобщить и систематизировать изученные методы решения логарифмических уравнений Выявить особенности каждого метода Выяснить, всегда ли ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
Методы решения уравнений с одной переменной

Методы решения уравнений с одной переменной

Тема урока: «Решение уравнений с одной переменной». Цели урока: закрепить знания и умения решений квадратных уравнений; повторить основные методы ...
7 способов решения тригонометрического уравнения

7 способов решения тригонометрического уравнения

Математики видят ее в:. гармонии чисел и форм, геометрической выразительности, стройности математических формул, решении задач различными способами, ...
Графический метод решения систем уравнений с двумя переменными

Графический метод решения систем уравнений с двумя переменными

Обобщить графический способ решения систем уравнений; Сформировать умения графи-чески решать системы уравне-ний второй степени, привлекая известные ...
Решение квадратных уравнений разными методами

Решение квадратных уравнений разными методами

«Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу различными способами, чем решать три-четыре различные задачи. Решая одну ...
Новое свойство квадратных уравнений

Новое свойство квадратных уравнений

Вы решали квадратные уравнения различными способами: выделением квадрата двучлена, по формуле корней, с помощью теоремы Виета, и каждый раз убеждались ...

Конспекты

Методы решения квадратных уравнений

Методы решения квадратных уравнений

Организационная информация. . . Тема урока. . Квадратные уравнения: методы решения. . . Предмет. . Алгебра. . . Класс. ...
Нестандартные приемы решения квадратных уравнений

Нестандартные приемы решения квадратных уравнений

. Тема урока:. . Нестандартные приемы решения квадратных уравнений. Цели урока:. Образовательная. – познакомить учащихся с нестандартными. ...
Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
Логарифмические уравнения решаемые с помощью квадратных уравнений

Логарифмические уравнения решаемые с помощью квадратных уравнений

Министерство образования и науки Республики Казахстан. Атбасарский районный отдел образования. Акмолинской области. Открытый урок по алгебре ...
Применение метода половинного деления отрезка для приближенного решения уравнений

Применение метода половинного деления отрезка для приближенного решения уравнений

Воробьева. Любовь Владимировна. учитель математики и информатики. МКОУ Алешковская СОШ. Воронежская область. Класс:10. Тема урока:. «Применение ...
Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений

Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений

Тема урока: Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений. Цели урока:. Образовательные. :. . ...
Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Тема:. «Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений». Тип урока:. урок изучения нового материала. Цели урока:. ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

Управление образования. администрации Павловского района. Проект урока. Предмет алгебра. класс 8 В. Тема. Графическое решение ...
Графический способ решения уравнений в среде Microsoft Excel 2007

Графический способ решения уравнений в среде Microsoft Excel 2007

Графический способ решения уравнений в среде Microsoft Excel 2007. Тип урока:. Обобщение, закрепление пройденного материала и объяснение нового. ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

Графическое решение квадратных уравнений. . Цели урока:. . закрепить основные методы и навыки техники построения и чтения графиков линейных ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:29 октября 2018
Категория:Математика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации