- В мире квадратных уравнений

Презентация "В мире квадратных уравнений" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "В мире квадратных уравнений" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

Выполнила: Шатилова Виктория Ученица 9 «А» класса МОУ «СОШ р.п. Красный Текстильщик Саратовского района Саратовской области» Руководитель: Свириденко О.В. ГОУ ДПО СарИПКиПРО региональный конкурс «Математика в моей жизни - 2009». "В мире квадратных уравнений". 2009 г
Слайд 1

Выполнила: Шатилова Виктория Ученица 9 «А» класса МОУ «СОШ р.п. Красный Текстильщик Саратовского района Саратовской области» Руководитель: Свириденко О.В.

ГОУ ДПО СарИПКиПРО региональный конкурс «Математика в моей жизни - 2009»

"В мире квадратных уравнений"

2009 г

Оглавление. Введение Заметки прошлого Основные понятия Теорема Виета Способы решения квадратного уравнения
Слайд 2

Оглавление

Введение Заметки прошлого Основные понятия Теорема Виета Способы решения квадратного уравнения

Математика — основа точных наук. На первый взгляд кажется, что она не имеет никакого отношения к природе, но на самом деле это не так. Без неё невозможно построить корабль и самолет, автомобили и метрополитены, даже строительство домов требует точности. Любовь к точным наукам развивает умение логиче
Слайд 3

Математика — основа точных наук. На первый взгляд кажется, что она не имеет никакого отношения к природе, но на самом деле это не так. Без неё невозможно построить корабль и самолет, автомобили и метрополитены, даже строительство домов требует точности. Любовь к точным наукам развивает умение логически мыслить, анализировать, смотреть на вещи другими глазами и давать точное определение.

Введение

Я согласна с высказыванием английского физиолога Андру Филлинг Хаксли «Математика похожа на мельницу: если вы засыпете в нее зерна пшеницы, то получите муку, если же засыпете отруби, отруби и получите», поэтому я пытаюсь с большим старанием и желанием учить алгебру, геометрию и физику. Но больше всего я люблю решать квадратные уравнения. Знания в этой области мне даются легко.

Цель работы: рассмотреть неизвестные способы решения квадратных уравнений Задачи: познакомиться с историей возникновения квадратных уравнений повторить теорему Виета и её доказательство узнать и понять незнакомые решения квадратных уравнений
Слайд 4

Цель работы: рассмотреть неизвестные способы решения квадратных уравнений Задачи: познакомиться с историей возникновения квадратных уравнений повторить теорему Виета и её доказательство узнать и понять незнакомые решения квадратных уравнений

«Уравнение есть равенство, которое еще не является истинным, но которое стремятся сделать истинным, не будучи уверенными, что этого можно достичь.» Фуше А. «Процесс " решения" уравнения есть просто акт приведения его к возможно более простой форме. В какой бы форме уравнение ни было написа
Слайд 5

«Уравнение есть равенство, которое еще не является истинным, но которое стремятся сделать истинным, не будучи уверенными, что этого можно достичь.» Фуше А.

«Процесс " решения" уравнения есть просто акт приведения его к возможно более простой форме. В какой бы форме уравнение ни было написано, его информационный характер остается тот же.» Лодж О.

Методы решения квадратных уравнений были известны еще в древние времена. Они излагаются, например, в вавилонских рукописях времен царя Хаммурапи (XX в. до н. э.), в трудах древнегреческого математика Евклида (III в. до н. э.), древних китайских и японских трактатах. Заметки прошлого. Многие математи
Слайд 6

Методы решения квадратных уравнений были известны еще в древние времена. Они излагаются, например, в вавилонских рукописях времен царя Хаммурапи (XX в. до н. э.), в трудах древнегреческого математика Евклида (III в. до н. э.), древних китайских и японских трактатах.

Заметки прошлого

Многие математики древности решали квадратные уравнения геометрическим способом. Например, для решения уравнения x2 + 10x = 39 поступали следующим образом. Пусть АВ = х, ВС = 5 (= 10 : 2). На стороне АС = АВ + ВС строился квадрат, который разбивался на четыре части, как показано на рисунке 92. Очевидно, что сумма площадей I, II и III частей равна x2 + 10x, или 39.

Если к этой площади прибавить площадь IV части, то в результате получится 64 — площадь всего квадрата. Но эта же площадь равна (х + 5)2, так как АС = х + 5. Следовательно,

(х + 5)2 = 64 х + 5 = 8, х = 3.

В одном из папирусов есть задача: «Найти площадь прямоугольного поля, если площадь 12, а 3/4длины равны ширине.». Древний Египет. Впервые квадратное уравнение сумели решить математики древнего Египта. Прошли тысячелетия, и сейчас мы получим два решения уравнения: -4 и 4.Но в египетской задаче и мы п
Слайд 7

В одном из папирусов есть задача: «Найти площадь прямоугольного поля, если площадь 12, а 3/4длины равны ширине.»

Древний Египет

Впервые квадратное уравнение сумели решить математики древнего Египта.

Прошли тысячелетия, и сейчас мы получим два решения уравнения: -4 и 4.Но в египетской задаче и мы приняли бы х=4,т.к. длина поля может быть только положительной величиной.

Европа. Формулы решения квадратных уравнений по образцу ал- Хорезми(Мухаммед ал – Харезми - великий мусульманский математик, астроном и географ, основатель классической алгебры) в Европе были впервые изложены в "Книге абака", написанной в 1202 году итальянским математиком Леонардо Фибоначч
Слайд 8

Европа

Формулы решения квадратных уравнений по образцу ал- Хорезми(Мухаммед ал – Харезми - великий мусульманский математик, астроном и географ, основатель классической алгебры) в Европе были впервые изложены в "Книге абака", написанной в 1202 году итальянским математиком Леонардо Фибоначчи(Пизанский около 1170 — около 1250г. – первый крупный математик средневековой Европы. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Лист из книги абака

Леонардо Фибоначчи

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2 + bx = c при возможных комбинациях знаков коэффициентов b , c , было сформулировано в Европе лишь в 1544 г. М. Штифелем (около 1487 — 19 апреля 1567) — немецкий математик .
Слайд 9

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2 + bx = c при возможных комбинациях знаков коэффициентов b , c , было сформулировано в Европе лишь в 1544 г. М. Штифелем (около 1487 — 19 апреля 1567) — немецкий математик .

Квадратное уравнение- это уравнение вида ax2+bx+c=0 где, a, b, c - действительные числа, причем a не равно 0. Если a = 1 , то квадратное уравнение называют приведенным; если a не равно 1, - то неприведенным. Числа a, b, c носят следующие названия a - первый коэффициент, b - второй коэффициент, c - с
Слайд 10

Квадратное уравнение- это уравнение вида ax2+bx+c=0 где, a, b, c - действительные числа, причем a не равно 0. Если a = 1 , то квадратное уравнение называют приведенным; если a не равно 1, - то неприведенным. Числа a, b, c носят следующие названия a - первый коэффициент, b - второй коэффициент, c - свободный член.

Основные понятия

Теорема Виета. Теорема, выражающая связь между корнями квадратного уравнения и его коэффициентами, носящая имя Виета, была им сформулирована впервые в 1591 году так: сумма корней приведенного квадратного уравнения равна коэффициенту при x, взятому с противоположным знаком, а произведение — свободном
Слайд 11

Теорема Виета

Теорема, выражающая связь между корнями квадратного уравнения и его коэффициентами, носящая имя Виета, была им сформулирована впервые в 1591 году так: сумма корней приведенного квадратного уравнения равна коэффициенту при x, взятому с противоположным знаком, а произведение — свободному члену.

«Виет (1540-1603) сделал решающий шаг, введя символику во все алгебраические доказательства путем применения буквенных обозначений для выражения как известных, так и неизвестных величин не только в алгебре, но также и в тригонометрии.» Бернал Д.

Четыре года опалы оказались чрезвычайно плодотворными для Виета. Математика стала его единственной страстью, он работал самозабвенно. Мог просиживать за письменным столом по трое суток подряд, только иногда забываясь сном на несколько минут. Именно тогда он начал большой труд, который назвал "Искусство анализа или Новая алгебра".Книгу завершить не удалось, но главное было написано. И это главное определило развитие всей математики Нового времени.

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел, поэтому при решении уравнений рассматривал только положительные корни.

Доказательство теоремы Виета. Пусть x1 и x2 – различные корни квадратного трехчлена x2 + px + q. Теорема Виета утверждает, что имеют место следующие соотношения: x1 + x2 = –p x1 x2 = q. Для доказательства подставим каждый из корней в выражение для квадратного трехчлена. Получим два верных числовых р
Слайд 12

Доказательство теоремы Виета

Пусть x1 и x2 – различные корни квадратного трехчлена x2 + px + q. Теорема Виета утверждает, что имеют место следующие соотношения: x1 + x2 = –p x1 x2 = q

Для доказательства подставим каждый из корней в выражение для квадратного трехчлена. Получим два верных числовых равенства: x12 + px1 + q = 0 x22 + px2 + q = 0

Вычтем эти равенства друг из друга. Получим x12 – x22 + p (x1 – x2) = 0

Разложим разность квадратов и одновременно перенесем второе слагаемое в правую часть: (x1 – x2) (x1 + x2) = –p (x1 – x2)

Так как по условию корни x1 и x2 различны, то x1 – x2 не равна 0 и мы можем сократить равенство на x1 – x2. Получим первое равенство теоремы: x1 + x2 = –p. Для доказательства второго подставим в одно из написанных выше равенств (например, в первое) вместо коэффициента p, равное ему число – (x1 + x2)
Слайд 13

Так как по условию корни x1 и x2 различны, то x1 – x2 не равна 0 и мы можем сократить равенство на x1 – x2. Получим первое равенство теоремы: x1 + x2 = –p

Для доказательства второго подставим в одно из написанных выше равенств (например, в первое) вместо коэффициента p, равное ему число – (x1 + x2): x12 – (x1 + x2) x1 + q = 0

Преобразуя левую часть, получаем: x12 – x12 – x2 x1 + q = 0 x1 x2 = q, что и требовалось доказать.

Способы решения квадратных уравнений. ?
Слайд 14

Способы решения квадратных уравнений

?

Решение квадратных уравнений с помощью циркуля и линейки. нахождения корней квадратного уравнения ах2 + bх + с = 0 с помощью циркуля и линейки (рис. 5). Допустим, что искомая окружность пересекает ось абсцисс в точках В(х1; 0 ) и D (х2; 0), где х1 и х2 - корни уравнения ах2 + bх + с = 0, и проходит
Слайд 15

Решение квадратных уравнений с помощью циркуля и линейки

нахождения корней квадратного уравнения ах2 + bх + с = 0 с помощью циркуля и линейки (рис. 5).

Допустим, что искомая окружность пересекает ось абсцисс в точках В(х1; 0 ) и D (х2; 0), где х1 и х2 - корни уравнения ах2 + bх + с = 0, и проходит через точки А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х1х2/ 1 = c/a.

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

Итак: 1) Построим точки (центр окружности) и A(0; 1); 2) проведем окружность с радиусом SA; 3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения. При этом возможны три случая. 1) Радиус окружности больше ординаты центра (AS > SK, или R > a +
Слайд 16

Итак: 1) Построим точки (центр окружности) и A(0; 1); 2) проведем окружность с радиусом SA; 3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая. 1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках (рис. 6,а) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0. 2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 - корень квадратного уравнения. 3) Радиус окружности меньше ординаты центра

окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.
Слайд 17

окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

• Пример: Решим уравнение х2- 2х - 3 = 0 (рис. 7). Решение. Определим координаты точки центра окружности по формулам: Проведем окружность радиуса SA, где А (0; 1). Ответ: х1 = - 1; х2 = 3.
Слайд 18

• Пример: Решим уравнение х2- 2х - 3 = 0 (рис. 7). Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1). Ответ: х1 = - 1; х2 = 3.

Решение квадратных уравнений с помощью номограммы. z2 + pz + q = 0. Криволинейная шкала номограммы построена по формулам (рис.11): Полагая ОС = р, ED = q, ОЕ = а Из подобия треугольников САН и CDF получим пропорцию. откуда после подстановок и упрощений вытекает уравнение z2 + pz + q = 0
Слайд 19

Решение квадратных уравнений с помощью номограммы

z2 + pz + q = 0.

Криволинейная шкала номограммы построена по формулам (рис.11): Полагая ОС = р, ED = q, ОЕ = а Из подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z2 + pz + q = 0

• Примеры. 1) Для уравнения z2 - 9z + 8 = 0 номограмма дает корни z1 = 8,0 и z2 = 1,0 (рис.12). 2) Решим с помощью номограммы уравнение 2z2 - 9z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z2 - 4,5z + 1 = 0. Номограмма дает корни z1 = 4 и z2 = 0,5. 3) Для уравнения z2 - 25
Слайд 20

• Примеры. 1) Для уравнения z2 - 9z + 8 = 0 номограмма дает корни z1 = 8,0 и z2 = 1,0 (рис.12). 2) Решим с помощью номограммы уравнение 2z2 - 9z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z2 - 4,5z + 1 = 0. Номограмма дает корни z1 = 4 и z2 = 0,5. 3) Для уравнения z2 - 25z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение t2 - 5t + 2,64 = 0, которое решаем посредством номограммы и получим t1 = 0,6 и t2 = 4,4, откуда z1 = 5t1 = 3,0 и z2 = 5t2 = 22,0.

Геометрический способ решения квадратных уравнений. Примеры. 1) Решим уравнение х2 + 10х = 39. В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15). Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая стор
Слайд 21

Геометрический способ решения квадратных уравнений.

Примеры. 1) Решим уравнение х2 + 10х = 39. В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15). Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х2, четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х2 + 10х + 25. Заменяя х2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

Преобразуя уравнение, получаем у2 - 6у = 16. На рис. 17 находим «изображения» выражения у2 - 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у2 - 6у прибавить 9, то получим площадь квадрата со стороной у - 3. Заменяя выр
Слайд 22

Преобразуя уравнение, получаем у2 - 6у = 16. На рис. 17 находим «изображения» выражения у2 - 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у2 - 6у прибавить 9, то получим площадь квадрата со стороной у - 3. Заменяя выражение у2 - 6у равным ему числом 16, получаем: (у - 3)2 = 16 + 9, т.е. у - 3 = ± √25, или у - 3 = ± 5, где у1 = 8 и у2 = - 2.

2.Решить геометрически уравнение у2 - 6у - 16 = 0.

Вывод. В ходе работы я познакомилась с историей возникновения квадратных уравнений, повторила теорему Виета и её доказательство. Узнала интересные способы решения квадратных уравнений. Я уверена, что математические знания, в частности по данной теме, помогут мне при поступлении в ВУз.
Слайд 23

Вывод

В ходе работы я познакомилась с историей возникновения квадратных уравнений, повторила теорему Виета и её доказательство. Узнала интересные способы решения квадратных уравнений. Я уверена, что математические знания, в частности по данной теме, помогут мне при поступлении в ВУз.

Литература: 1.Большая энциклопедия Кирилла и Мефодия 2.Википедия 3.Справочник математических формул
Слайд 24

Литература: 1.Большая энциклопедия Кирилла и Мефодия 2.Википедия 3.Справочник математических формул

Список похожих презентаций

8 класс "Решение квадратных уравнений"

8 класс "Решение квадратных уравнений"

. . . . . . «Уравнение – это золотой ключ, открывающий все математические тайны». . Цель: привести в систему знания о квадратных уравнениях и умение ...
10 способов решения квадратных уравнений

10 способов решения квадратных уравнений

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х2+Х=3/4 Х2-Х=14,5. Как составлял и решал Диофант квадратные уравнения. ...
Блок-схема для решения квадратных неравенств

Блок-схема для решения квадратных неравенств

Неравенства второй степени вида. D. D=0 x=m m. D>0 m n. . . . . . . . Нет решения. . . . . . . . . Тренажер. решение квадратных неравенств. Варианты ...
Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
Аналитические методы решения логарифмических уравнений

Аналитические методы решения логарифмических уравнений

Цели урока:. Обобщить и систематизировать изученные методы решения логарифмических уравнений Выявить особенности каждого метода Выяснить, всегда ли ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
В мире чисел. ВАЖНАЯ ЦИФРА.

В мире чисел. ВАЖНАЯ ЦИФРА.

Жили – были числа. Назови их…. А какие числа стояли не на своих местах? Числа очень любили складываться, потому что они сразу превращались в большее ...
«В мире животных. Занимательная математика»

«В мире животных. Занимательная математика»

Цели:. Знать: алгоритмы сравнения, сложения, вычитания десятичных дробей, названия геометрических фигур; правила правописания числительных. Уметь: ...
В мире чисел

В мире чисел

Корни нумерологии. 1. Качества: благость, желательность, необходимость, неделимость. Связывалась с Аполлоном, Прометеем Символизирует начинание, источник, ...
В мире плоскостей

В мире плоскостей

1. Изображение. . . . Сколько тут элементов? «Невозможные объекты» и зрительные иллюзии. Бесконечная фотография. Невозможное окно. Сколько здесь колонн? ...
В мире чисел

В мире чисел

Математика — это наука, имеющая дело с числами, количеством, формой. Без знания математики вся современная жизнь была бы невозможна. Например, у нас ...
В мире числовых суеверий

В мире числовых суеверий

Я выросла в потомственной семье математиков. Мои бабушка, Елисеева Ольга Алексеевна – заслуженный учитель РФ, и дедушка, Елисеев Николай Александрович, ...
В мире единиц длины

В мире единиц длины

Как люди измеряли длину раньше и как измеряют теперь? Историческая справка. С незапамятных времён человеку приходилось измерять расстояние в связи ...
В гостях у Маши

В гостях у Маши

Цель урока:. "Научиться решать задачи на сложение и вычитание обыкновенных дробей". Проверка домашнего задания. 1)Х + = , 2)у- = , 3)х- =. Угадайте ...
В математике нет символов для неясных мыслей

В математике нет символов для неясных мыслей

"Математику уже затем учить надо, что она ум в порядок приводит". М.В.Ломоносов (1711?-1765). гениальный русский ученый во многих отраслях знаний, ...
В лабиринте тригонометрических формул

В лабиринте тригонометрических формул

Кот в мешке. В какой четверти лежит угол α, если выполняется условие sinα>0, cosα0, tgα. Достань свою звезду. Выведи формулу sin2α cos2α tg2α ctg2α ...
В здоровом теле- здоровый ум

В здоровом теле- здоровый ум

Выполни вычисления:. Р) 7 : 2 = Н) 1 : 4 = Е) 6,4 : 4 = П) 3 : 2 = Т) 4,3 : 43 = О) 80 : 100= Ц) 0,8 ∙ 100 = 1,5    3,5    0,8    0,36    1,6    0,25    0,1 1,5    3,5    0,8    0,36    1,6    0,25    0,1 ...
В геометрии нет царских дорог

В геометрии нет царских дорог

Супертест, 1 команда. 1. 1.Как образно говорят о большом количестве чего-нибудь? А.Пруд пруди. В. Болото болтай. Б. Залив заливай. Г. Море маринуй. ...
В стране логарифмов

В стране логарифмов

Заполни пропуски Log? b + Logx ? = Log? (?a) Logx ? - Log? b = Log? (a/?) Logx b? = pLog? (?) х а b p. Вычисли Lg 2 + lg 5 Log3 3 – 0,5 log3 9 Log ...
В гостях у Геометрии

В гостях у Геометрии

Не крутите пестрый глобус, Не найдете вы на нем Той страны, страны чудесной, О которой мы поем. В той стране живут фигуры, Точки, линии, тела, Треугольники, ...

Конспекты

В мире многоугольников

В мире многоугольников

Технологическая карта урока. Учитель: Береговская Е.А. Предмет: математика. Класс: 5 –б. Автор УМК: Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. ...
Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
В мире Математики

В мире Математики

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ. . Дополнительного образования детей Центр детского Творчества. Разработка занятия ...
В мире симметрии

В мире симметрии

В мире симметрии. Цели:. Обучающая. Сформировать понятие симметрии, как геометрическое свойство фигур. Развивающая. . Продолжить формирование ...
В мире желтого цвета

В мире желтого цвета

Конспект урока для 1 класса на тему. «В мире желтого цвета». Программное содержание. Учить детей называть основные цвета спектра: желтый, ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
В мире десятичных дробей

В мире десятичных дробей

МКУ «Департамент образования Местной администрации г.о. Нальчик». Муниципальное казенное образовательное учреждение. дополнительного образования ...
В мире формул

В мире формул

Тема: «В мире формул». . 7 класс. Цели урока:. . Обучающая:. обобщить изученный материал, проверить степень усвоения темы; продолжить преобразовывать ...
В мире волшебных чисел

В мире волшебных чисел

Конспект занятия по математике в старшей группе. . . Тема:. "В мире волшебных чисел". Выполнила воспитатель старшей группы:. Куликова ...
В стране математики

В стране математики

Муниципальное образовательное учреждение. «Моркинская средняя (полная) общеобразовательная школа№2». Республики Марий Эл. План – конспект. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:11 декабря 2018
Категория:Математика
Содержит:24 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации