- Исследование функции

Презентация "Исследование функции" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Исследование функции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Дорохова Ю.А. Применение производной. к исследованию функций
Слайд 1

Дорохова Ю.А.

Применение производной

к исследованию функций

Цель занятия: ПОВТОРЕНИЕ ПРАВИЛА НАХОЖДЕНИЯ ПРОИЗВОДНОЙ ФУНКЦИИ И ПРИМЕНЕНИЕ ПРИ ИССЛЕДОВАНИИФУНКЦИИ,ФОРМИРОВАНИЕ ПРИЕМОВ ОБОБЩЕНИЯ, РАЗВИТИЕ ПРОСТРАНСТВЕННОГО МЫШЛЕНИЯ, УМЕНИЕ ПРИМЕНЯТЬ ЗНАНИЯ ПРИ ВЫПОЛНЕНИИ ПРАКТИЧЕСКОГО ЗАДАНИЯ. ВОСПИТАНИЕ ПОЛОЖИТЕЛЬНОГО ИНТЕРЕСА К ИЗУЧАЕМОМУ МАТЕРИАЛУ, АКТИВИЗАЦ
Слайд 2

Цель занятия:

ПОВТОРЕНИЕ ПРАВИЛА НАХОЖДЕНИЯ ПРОИЗВОДНОЙ ФУНКЦИИ И ПРИМЕНЕНИЕ ПРИ ИССЛЕДОВАНИИФУНКЦИИ,ФОРМИРОВАНИЕ ПРИЕМОВ ОБОБЩЕНИЯ, РАЗВИТИЕ ПРОСТРАНСТВЕННОГО МЫШЛЕНИЯ, УМЕНИЕ ПРИМЕНЯТЬ ЗНАНИЯ ПРИ ВЫПОЛНЕНИИ ПРАКТИЧЕСКОГО ЗАДАНИЯ. ВОСПИТАНИЕ ПОЛОЖИТЕЛЬНОГО ИНТЕРЕСА К ИЗУЧАЕМОМУ МАТЕРИАЛУ, АКТИВИЗАЦИИ МЫСЛИТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ, СОЗНАТЕЛЬНОЙ ДИСЦИПЛИНЫ, КУЛЬТУРЫ РЕЧИ.

ЗАДАЧА: УМЕТЬ ИССЛЕДОВАТЬ ФУНКЦИЮ С ПОМОЩЬЮ ПРОИЗВОДНОЙ , ЗНАТЬ Достаточный признак возрастания (убывания) функции, Признак максимума (минимума) функции, СФОРМИРОВАТЬ ПОНЯТИЕ ОБ АЛГОРИТМЕ, СПОСОБАХ ИССЛЕДОВАНИЯ ФУНКЦИИ ∙
Слайд 3

ЗАДАЧА:

УМЕТЬ ИССЛЕДОВАТЬ ФУНКЦИЮ С ПОМОЩЬЮ ПРОИЗВОДНОЙ , ЗНАТЬ Достаточный признак возрастания (убывания) функции, Признак максимума (минимума) функции, СФОРМИРОВАТЬ ПОНЯТИЕ ОБ АЛГОРИТМЕ, СПОСОБАХ ИССЛЕДОВАНИЯ ФУНКЦИИ ∙

Знаете ли вы, что…. Исследование функций с помощью производной позволяет более точно строить их графики, которые применяются для решения многих алгебраических задач.
Слайд 4

Знаете ли вы, что…

Исследование функций с помощью производной позволяет более точно строить их графики, которые применяются для решения многих алгебраических задач.

План работы на уроке. Повторение Изучение нового материала Закрепление Проверочная работа Обобщение изученного материала Домашнее задание Итог урока
Слайд 5

План работы на уроке

Повторение Изучение нового материала Закрепление Проверочная работа Обобщение изученного материала Домашнее задание Итог урока

Давайте вспомним…. Достаточный признак возрастания функции Достаточный признак убывания функции Необходимое условие экстремума Признак максимума функции Признак минимума функции
Слайд 6

Давайте вспомним…

Достаточный признак возрастания функции Достаточный признак убывания функции Необходимое условие экстремума Признак максимума функции Признак минимума функции

Изучение нового материала. Область определения Чётность, нечётность; периодичность Точки пересечения графика с осями координат Промежутки знакопостоянства Промежутки возрастания и убывания Точки экстремума и значения f в этих точках Поведение функции в окрестности “особых” точек и при больших по мод
Слайд 7

Изучение нового материала

Область определения Чётность, нечётность; периодичность Точки пересечения графика с осями координат Промежутки знакопостоянства Промежутки возрастания и убывания Точки экстремума и значения f в этих точках Поведение функции в окрестности “особых” точек и при больших по модулю x. Упражнения

Выполните устно: Выполните устно: Для функции f(x)=х3 определить D(f), четность, возрастание, убывание. Ответ:D(f)=R, нечётная, возростающая. Докажите, что функция f(x)=х5+4х возрастает на множестве R. 2) Пример исследования функции
Слайд 8

Выполните устно:

Выполните устно: Для функции f(x)=х3 определить D(f), четность, возрастание, убывание. Ответ:D(f)=R, нечётная, возростающая. Докажите, что функция f(x)=х5+4х возрастает на множестве R. 2) Пример исследования функции

f(x)=3x5-5x3+2. 1) D(f)=R, так как f – многочлен 2) f(-x)=-3x5+5x3+2, значит f(x) ни чётная, ни нечётная; не периодическая 3) Пересечение с осью Оу: 3х5-5х3+2=0, отсюда х=1 5),6) f’(x)=15x4-15x2=15x2(x2-1) D(f)=R, поэтому критических точек, для которых f’(x) не существует, нет f’(x)=0, если х2(х2-1)
Слайд 9

f(x)=3x5-5x3+2

1) D(f)=R, так как f – многочлен 2) f(-x)=-3x5+5x3+2, значит f(x) ни чётная, ни нечётная; не периодическая 3) Пересечение с осью Оу: 3х5-5х3+2=0, отсюда х=1 5),6) f’(x)=15x4-15x2=15x2(x2-1) D(f)=R, поэтому критических точек, для которых f’(x) не существует, нет f’(x)=0, если х2(х2-1)=0, т.е. при х=0, х=-1, х=1 Таблица, график

Исследование функции Слайд: 10
Слайд 10
Задание. Используя схему исследования функции выполните задание: п. 24; №296 (а; б), №299 (а; б).
Слайд 11

Задание

Используя схему исследования функции выполните задание: п. 24; №296 (а; б), №299 (а; б).

Проверочная работа: Исследовать функцию и построить её график: Вариант 1 Вариант 2 f(x)=-x3+3x-2 . f(x)=x4-2x2-3 Решение Решение
Слайд 12

Проверочная работа:

Исследовать функцию и построить её график: Вариант 1 Вариант 2 f(x)=-x3+3x-2 . f(x)=x4-2x2-3 Решение Решение

Вариант 1. 1) D(f)=R 2) f(-x)=x3-3x-2, значит f(x) ни чётная, ни нечётная; не периодическая 3) f(x)=0: (x-1)(x2+x-2)=0; x=1, x=-2; f(0)=-2 5),6) f’(x)=-3x2+3=-3(x-1)(x+1) Таблица, график
Слайд 13

Вариант 1

1) D(f)=R 2) f(-x)=x3-3x-2, значит f(x) ни чётная, ни нечётная; не периодическая 3) f(x)=0: (x-1)(x2+x-2)=0; x=1, x=-2; f(0)=-2 5),6) f’(x)=-3x2+3=-3(x-1)(x+1) Таблица, график

Исследование функции Слайд: 14
Слайд 14
Вариант 2. 1) D(f)=R 2) f(-x)=x4-2x2-3, значит f(-x)=f(x) для любого х, принадлежащего D(f) – функция является чётной. 3) f(x)=0: (x2-3)(x2+1)=0; x=±; f(0)=-3 5),6) f’(x)=4х3-4x=4х(x-1)(x+1). Таблица, график
Слайд 15

Вариант 2

1) D(f)=R 2) f(-x)=x4-2x2-3, значит f(-x)=f(x) для любого х, принадлежащего D(f) – функция является чётной. 3) f(x)=0: (x2-3)(x2+1)=0; x=±; f(0)=-3 5),6) f’(x)=4х3-4x=4х(x-1)(x+1)

Таблица, график

Исследование функции Слайд: 16
Слайд 16
Подведём итоги: Новый материал полностью усвоен, урок понравился. Тема усвоена не полностью. Ничего не было понятно.
Слайд 17

Подведём итоги:

Новый материал полностью усвоен, урок понравился. Тема усвоена не полностью. Ничего не было понятно.

Домашнее задание. Повторить схему исследования функции. п. 24; №296 (в), №299 (в).
Слайд 18

Домашнее задание

Повторить схему исследования функции. п. 24; №296 (в), №299 (в).

Список похожих презентаций

Исследование функции с помощью производной

Исследование функции с помощью производной

Правила дифференцирования. Производная суммы равна сумме производных. Постоянный множитель можно вынести за знак производной. Производная произведения ...
Исследование функции с помощью производной

Исследование функции с помощью производной

Исследование функции с помощью производной. УСТНЫЙ ОПРОС. Достаточный признак возрастания функции. Достаточный признак убывания функции. Какие точки ...
Исследование функции и построение графика

Исследование функции и построение графика

ЕГЭ - 2014 Ответ: 3. Ответ: -0,25. Ответ: 7. Ответ: 2. . Ответ: 9. Ответ: 0. Ответ: -2. Ответ: 5. Ответ: 4. Ответ: -3. . Ответ: -12. . Исследование ...
Исследование функции производной

Исследование функции производной

Цели урока: выяснение степени усвоения . правил вычисления производных; дать понятие «промежутка монотонности функции» уметь применять производную ...
Исследование графика функции с помощью производной.

Исследование графика функции с помощью производной.

Задача 1. По графику производной укажите количество промежутков возрастания непрерывной на [-7;4] функции. -7 4 Y=f'(x) проверка 0 1 X Y Y=f‘(x). ...
Тригонометрические функции углового аргумента - алгебра,

Тригонометрические функции углового аргумента - алгебра,

Тригонометрическая функция углового аргумента. Что будем изучать:. Определение. Примеры. Вспомним геометрию. Градусная мера угла. Радианная мера угла. ...
Тригонометрические функции

Тригонометрические функции

Содержание. Введение................................................... .......3-5слайд Начало изучения..............................................6-7 ...
Свойства функции

Свойства функции

1.Определение функции. y= x, n=2 2.Область определения D(y)=[0;+ ). 3.Область значений. E(y)=[0;+ ) 4.Четность не четная и не нечетная. 0. 5.Ноль ...
Свойства и график показательной функции

Свойства и график показательной функции

Тема: «Свойства и график показательной функции». Цели урока: Усвоить формулировку определения показательной функции; Научиться исследовать показательную ...
Производная сложной функции

Производная сложной функции

Производная сложной функции. Сложная функция. Производная простой функции. Простая функция. Пример:. . . . ...
Признаки возрастания и убывания функции

Признаки возрастания и убывания функции

Цель урока. Научить применять производную к определению промежутков монотонности функций, продолжать учить работать в парах, развивать навыки работы ...
Построить график функции

Построить график функции

Содержание:. 1. Функция y=sin x, её свойства и разновидности; 2. Функция y=cos x, её свойства и разновидности; 3. Примеры задач. 4. Закончить просмотр. ...
График квадратичной функции Неравенства с одной переменной

График квадратичной функции Неравенства с одной переменной

Квадратичная функция и ее график. Квадратичной функцией называется функция, которую можно задать формулой вида y = ax² + bx + c, где х – независимая ...
Геометрический смысл производной функции

Геометрический смысл производной функции

Рано или поздно всякая правильная математическая идея находит применение в том или ином деле. А.Н.Крылов. Цель урока. 1) выяснить, в чем состоит геометрический ...
Вычисление производной функции

Вычисление производной функции

При вычислении производной функции, будем иметь в виду, что один из способов найти производную - это взять достаточно малые значения справа и слева ...
Возрастание и убывание функции

Возрастание и убывание функции

Числовые промежутки. [α;b] – отрезок (α;b) – интервал (α;b] – полуинтервал [α;b) - полуинтервал. Функция f(x) называется возрастающей на некотором ...
Влияние коэффициентов а, b и с на расположение графика квадратной функции

Влияние коэффициентов а, b и с на расположение графика квадратной функции

Определите, график какой функции изображен на рисунке:. у = х² – 2х – 1; у = –2х² – 8х; у = х² – 4х – 1; у = 2х² + 8х + 7; у = 2х² – 1. у = ½х² – ...
Взаимное расположение графиков линейной функции

Взаимное расположение графиков линейной функции

Разбейте функции, заданные формулами, на группы:. у = 2х - 3; у = х2 - 3; у = - 5х; у = 4 - 0,5х; у = - х +2; у=15х;. 7. 8. 9. 10. у = х (1 - х). ...
Взаимно обратные функции

Взаимно обратные функции

Задача. у = f (x), x - ! Найти значение у при заданном значении х. Задача. у = f (x), у- ! Найти значение х при заданном значении у. Дано: у = 2х ...
Функция. Свойства функции

Функция. Свойства функции

Cодержание 4. Определение функции. 1 5. Способы задания функции. График функции. Алгоритм описания свойств функции. Свойства функции. 3. Числовой ...

Конспекты

Исследование функции с помощью производной

Исследование функции с помощью производной

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №151 Красногвардейского района Санкт-Петербурга. 195426, ...
Исследование функции с помощью производной

Исследование функции с помощью производной

Опорный конспект. . «Исследование функции с помощью производной. ». ГАОУ СПО ВПТК. Зотова И.В., преподаватель математики. Найти область ...
Исследование функции

Исследование функции

Яковлева Мария Викторовна. МОУ Приморская СОШ. Челябинская область Агаповский район поселок Приморский. Учитель математики. Урок по теме ...
Исследование функции с помощью производной

Исследование функции с помощью производной

Выездное заседание республиканского клуба «Пеликан». 20 марта 2012 г. План-конспект урока. Тема «Исследование функции с помощью производной». ...
Свойства функции

Свойства функции

Управление образования г.Астаны. ИПК и ПК СО. ГУ «Средняя школа № 36». Урок алгебры в 10 классе по теме: «Свойства функции». Подготовила: ...
Производная сложной функции

Производная сложной функции

АЛГЕБРА. 10 класс. «Производная сложной функции». Тема. : Производная сложной функции. ...
Решение квадратного неравенства с помощью графика квадратичной функции

Решение квадратного неравенства с помощью графика квадратичной функции

"Решение квадратного неравенства с помощью графика квадратичной функции". . Цели:. . 1. Повторить знания о квадратичной функции. 2. Познакомиться ...
Применение понятия периодической функции

Применение понятия периодической функции

РАЗРАБОТКА УРОКА. учителя математики МОУ гимназии № 35 г.о. Тольятти. Батаевой Галины Александровны. Предмет: алгебра и начала анализа. Класс: ...
Применение производной к исследованию функции

Применение производной к исследованию функции

Обобщающий урок в 11 классе по теме. «Применение производной к исследованию функции». Цель урока:. Систематизирование и обобщение знаний ...
Возрастание и убывание функции

Возрастание и убывание функции

Муниципальное общеобразовательное учреждение. . Копорская средняя общеобразовательная школа. Ленинградской области. КОНСПЕКТ УРОКА. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:2 мая 2019
Категория:Математика
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации