Конспект урока «Исследование функции с помощью производной» по математике
Опорный конспект
«Исследование функции с помощью производной»
ГАОУ СПО ВПТК
Зотова И.В., преподаватель математики
-
Найти область определения: D (f);
Все значения, которые принимает независимая переменная
-
Найти область значения: E (f);
Все значения, которые принимает функция
-
Определить четность / нечетность функции;
Функция y = f (x) называется четной (нечетной), если для любого x из области определения функции выполняется равенство f (-x) = f (x) (f (-x) = -f (x))
Свойства четных (нечетных) функций:
Если функция является четной (нечетной), то её график симметричен относительно оси ординат (начала координат).
-
Определить нули функции (точки пересечения с осями координат);
Точки пересечения с OY: f (x)=0
Точки пересечения с OX: f (0)
-
Определить промежутки знакопостоянства (график расположен выше оси OX или ниже этой оси);
Промежутки знакопостоянства - множества значений аргумента, на которых значения функции только положительны или только отрицательны.
-
Определить промежутки монотонности (промежутки возрастания и убывания);
Точки, в которых производная функции равна нулю или не существует (f, (x) = 0 или f, (x) не существует), называются критическими.
Пусть функция у = f(x) определена и непрерывна в промежутке Х во всех внутренних точках этого промежутка имеет неотрицательную производную (f, (x)≥0), тогда функция у = f(x) возрастает на промежутке Х.
Пусть функция у = f(x) определена и непрерывна в промежутке Х во всех внутренних точках этого промежутка имеет неотрицательную производную (f, (x)≤ 0), тогда функция у = f(x) убывает на промежутке Х.
-
Определить точки экстремума;
Необходимое условие экстремума: Если функция у = f(x) имеет экстремум в точке х = а, то либо f, (а) = 0, либо f, (а) не существует.
Пусть х=а – критическая точка функции у = f(x), и пусть существует интервал (b;с), содержащий точку а внутри себя и такой, что на каждом из интервалов (b;а), (а;с) производная f, (x) существует и сохраняет постоянный знак. Тогда:
-
если на (b;а) производная f, (x)>0, а на (а;с) производная f, (x)f(x) ( если производная в критической точке меняет свой знак с + на -, то эта точка - точка максимума).
-
если на (b;а) производная f, (x)f, (x)>0, то х=а – точка минимума функции у = f(x) ( если производная в критической точке меняет свой знак с - на +, то эта точка - точка минимума).
Достаточное условие экстремума: Если и на (b;а), и на (а;с) производная f, (x)f, (x)>0, то х=а не является точкой экстремума функции у = f(x) (если производная не меняет знак при переходе через критическую точку, то эта точка не точка экстремума).
-
Определить наибольшее и наименьшее значения функции.
Если функция непрерывна на отрезке [a; b], то своё наибольшее (наименьшее) значение на этом отрезке она принимает либо на конце отрезка, либо в критической точке.
Таким образом, для нахождения наибольшего (наименьшего) значения функции на отрезке, на котором она непрерывна, достаточно:
- найти критические точки функции, принадлежащие отрезку;
- вычислить значения функции в критических точках и на концах отрезка;
- из найденных значений выбрать наибольшее (наименьшее).
Здесь представлен конспект к уроку на тему «Исследование функции с помощью производной», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Математика Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.