» » » Элементы комбинаторики

Презентация на тему Элементы комбинаторики

tapinapura

Презентацию на тему Элементы комбинаторики можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 61 слайд.

скачать презентацию

Слайды презентации

Слайд 1: Презентация Элементы комбинаторики
Слайд 1

ГОУ средняя общеобразовательная школа № 80 с углубленным изучением английского языка Петроградского административного района г. Санкт- Петербурга

Слайд 2: Презентация Элементы комбинаторики
Слайд 2

Введение в комбинаторику

Разработка уроков для7класса. Работа выполнена учителем математики высшей категории Вашкевич Татьяной Сергеевной

Слайд 3: Презентация Элементы комбинаторики
Слайд 3

Основная цель – развить комбинаторное мышление, сформировать умение организованного перебора упорядоченных и неупорядоченных комбинаций из двух – трех элементов.

В данной теме интегрируются арифметические, начальные алгебраические и геометрические знания учащихся. Рассматриваются исторические комбинаторные задачи, способы составления фигурных чисел, магических и латинских квадратов, выводится формула n – го треугольного числа. В ходе организованного перебора различных комбинаций элементов двух множеств обосновывается правило произведения. С его помощью решаются простейшие комбинаторные задачи.

Слайд 4: Презентация Элементы комбинаторики
Слайд 4

Планирование уроков

Исторические комбинаторные задачи – 1 час Различные комбинации из трех элементов – 2 часа Таблица вариантов и правило произведения- 2 часа Подсчет вариантов с помощью графов – 1 час

Слайд 5: Презентация Элементы комбинаторики
Слайд 5

Урок № 1. Тема урока: «Исторические комбинаторные задачи»

В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать количество всевозможных комбинаций элементов, образованных по определенному правилу. Такие задачи называются комбинаторными, а раздел математики, занимающийся решением этих задач, называется комбинаторикой. С комбинаторными задачами люди столкнулись в глубокой древности. В Древнем Китае увлекались составлением магических квадратов. В Древней Греции занимались теорией фигурных чисел. Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д. Комбинаторика становится наукой лишь в 18 в. – в период, когда возникла теория вероятности.

Слайд 6: Презентация Элементы комбинаторики
Слайд 6

Фигурные числа

В древности для облегчения вычислений часто использовали камешки. При этом особое внимание уделялось числу камешков, которые можно было разложить в виде правильной фигуры.

Слайд 7: Презентация Элементы комбинаторики
Слайд 7

Квадратные числа: 1,4,16,25… 1 2*2=2 =4 3*3=3 =9 4*4=4 =16 5*5=5 =25 Nкв = n²

Слайд 8: Презентация Элементы комбинаторики
Слайд 8

Треугольные числа

1 1+2=3 1+2+3=5 1+2+3+4=10 1+2+3+4+5=15 Nтр = (n(n+1))/ 2

Слайд 9: Презентация Элементы комбинаторики
Слайд 9

Пятиугольные числа Nпят = n + 3(n(n-1)/2) 1 5 12 22

Слайд 10: Презентация Элементы комбинаторики
Слайд 10

Прямоугольные числа- составные числа, которые древние представляли в виде прямоугольников. Представления числа 12 выглядели так

12

Слайд 11: Презентация Элементы комбинаторики
Слайд 11

Непрямоугольные числа – простые числа, которые древние представляли в виде линий.

3 7

Слайд 12: Презентация Элементы комбинаторики
Слайд 12

Магические квадраты

Слайд 13: Презентация Элементы комбинаторики
Слайд 13

Латинские квадраты

Латинскими квадратами называют квадраты размером n x n клеток, в которых записаны натуральные числа от 1 до n, причем таким образом, что в каждой строке и в каждом столбце встречаются все эти числа по одному разу.

Слайд 14: Презентация Элементы комбинаторики
Слайд 14

Задачи

Посчитать число однобуквенных слов русского языка. Записать первые двенадцать квадратных чисел. Записать первые десять треугольных чисел. Составить латинский квадрат.

Слайд 15: Презентация Элементы комбинаторики
Слайд 15

Домашнее задание

1. Записать n- е по порядку кв. число, если: 1) n =20; 2) n =25 3) n =31; 2. Записать n- е по порядку треугольное число, если: 1) n=20; 2) n=33; 3) n=34; 3. Изобразить в древних традициях всеми возможными способами составное число: 1) 6; 2) 8; 3) 18; 4) 20; 4. Продолжить построение магического квадрата:

Слайд 16: Презентация Элементы комбинаторики
Слайд 16

1) Однобуквенных слов русского языка 11: а, б, в, ж, и, к, о, с, у, э, я.

Слайд 17: Презентация Элементы комбинаторики
Слайд 17

2) 1, 4, 9, 16,25, 36, 49, 64, 81, 100, 121

Слайд 18: Презентация Элементы комбинаторики
Слайд 18

3) 1, 3, 6, 10, 15, 21, 28, 36, 45, 55.

Слайд 19: Презентация Элементы комбинаторики
Слайд 19

Уроки № 2-3 Тема урока: «Различные комбинации из трех элементов»

Нередко в жизни бывают ситуации, когда задача имеет не одно, а несколько решений, которые нужно сравнить, а может быть, и выбрать наиболее подходящее для конкретной ситуации.

Слайд 20: Презентация Элементы комбинаторики
Слайд 20

Задача № 1 Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч. Сколько существует различных вариантов посещения футбольного матча для троих друзей?

Сочетания

Слайд 21: Презентация Элементы комбинаторики
Слайд 21

Антон и Борис Антон и Виктор Борис и Виктор Ответ: 3 варианта.

Слайд 22: Презентация Элементы комбинаторики
Слайд 22

Вывод: В задаче были составлены всевозможные сочетания из трех элементов по два: пары элементов из имеющихся трех элементов. Пары отличались друг от друга только составом элементов, а порядок расположения элементов в паре не учитывался.

Слайд 23: Презентация Элементы комбинаторики
Слайд 23

Размещения

Задача № 2 Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч на 1-ое и 2-ое места первого ряда стадиона. Сколько у друзей есть вариантов (способов) занять эти два места на стадионе? Записать все эти варианты.

Слайд 24: Презентация Элементы комбинаторики
Слайд 24
Слайд 25: Презентация Элементы комбинаторики
Слайд 25

Вывод: В задаче из трех элементов выбирались пары элементов и фиксировался их порядок расположения в паре, т.е. все составленные пары отличались друг от друга либо составом элементов, либо их расположением в паре. В комбинаторике такие пары называют размещениями из трех элементов по два.

Слайд 26: Презентация Элементы комбинаторики
Слайд 26

Перестановки

Задача № 3 Антону, Борису и Виктору повезло, и они купили 3 билета на футбол на 1-ое, 2-ое и 3-е места первого ряда стадиона. Сколькими способами могут занять мальчики эти места?

Слайд 27: Презентация Элементы комбинаторики
Слайд 27
Слайд 28: Презентация Элементы комбинаторики
Слайд 28

Вывод: В задаче были составлены всевозможные перестановки из трех элементов – комбинации из трех элементов, отличающихся друг от друга порядком расположения в них элементов.

Слайд 29: Презентация Элементы комбинаторики
Слайд 29

Устные задачи

1) Сколько подарочных наборов можно составить: а) из одного предмета; б) из двух предметов, если в наличии имеются одна ваза и одна ветка сирени? 2) Сколькими способами Петя и Вова могут занять 2 места за одной двухместной партой?

Слайд 30: Презентация Элементы комбинаторики
Слайд 30

1) Сколько различных трехзначных чисел можно записать с помощью цифр 1, 2 и 3 при условии, что цифры в числе: а) должны быть различными; б) могут повторяться?

Слайд 31: Презентация Элементы комбинаторики
Слайд 31

Решение

а) Способ составления трехзначных чисел из 3 различных цифр аналогичен способу записи троек букв в задаче 3: 123, 213, 132, 312, 231, 321. Получили 6 чисел.

Слайд 32: Презентация Элементы комбинаторики
Слайд 32

б) Перебор вариантов можно организовать следующим образом. Выпишем все числа, начинающиеся с цифры 1 в порядке их возрастания; затем – начинающиеся с цифры 2; после чего – начинающиеся с цифры 3: 111 112 113 211 212 213 311 312 313 121 122 123 221 222 223 321 322 323 131 132 133 231 232 233 331 332 333 Получили 27 чисел.

Слайд 33: Презентация Элементы комбинаторики
Слайд 33

§2 «Различные комбинации из трех элементов» На уроках решаются задачи №№ 3, 5, 7, 9, 11. Домашнее задание №№ 2, 4, 6, 8, 10.

Слайд 34: Презентация Элементы комбинаторики
Слайд 34

Уроки № 4 – 5 Тема урока: «Таблица вариантов и правило произведения»

Для решения комбинаторных задач существуют различные средства, исключающие возможность «потери» какой – либо комбинации элементов. Для подсчета числа комбинаций из двух элементов таким средством является таблица вариантов.

Слайд 35: Презентация Элементы комбинаторики
Слайд 35

Таблица вариантов

Задача №1. Записать всевозможные двузначные числа, используя пр этом цифры: 1) 1, 2 и 3; 2) 0, 1, 2 и 3. Подсчитать их количество N.

Слайд 36: Презентация Элементы комбинаторики
Слайд 36

Для подсчета образующихся чисел составим таблицу:

N = 3·3 = 9

Слайд 37: Презентация Элементы комбинаторики
Слайд 37

N = 3·4=12

Слайд 38: Презентация Элементы комбинаторики
Слайд 38

Задача № 2. Бросаются две игральные кости. Сколько различных пар очков может появиться на верхних гранях костей?

Слайд 39: Презентация Элементы комбинаторики
Слайд 39

С помощью составленной таблицы пар выпавших очков можно утверждать, что число всевозможных пар равно 6·6 = 36

Слайд 40: Презентация Элементы комбинаторики
Слайд 40

Правило произведения.

Для решения задач, аналогичных задачам 1 и 2, необязательно каждый раз составлять таблицу вариантов. Можно пользоваться правилом, которое получило в комбинаторике название «Правило произведения»: если существует n вариантов выбора первого элемента и для каждого из них есть m вариантов выбора второго элемента, то всего существует n·m различных пар с выбранными первым и вторым элементами.

Слайд 41: Презентация Элементы комбинаторики
Слайд 41

Задача № 3. Катя и Оля приходят в магазин, где продают в любом количестве плитки шоколада трех видов. Каждая девочка покупает по одной плитке. Сколько существует способов покупки?

Слайд 42: Презентация Элементы комбинаторики
Слайд 42

Задача № 3. (решение) Катя может купить плитку любого из трех видов шоколада (n=3). Оля может поступить аналогично (m=3). Пару шоколадок для Кати и для Оли можно составить n·m=3·3=9 различными способами. Ответ: 9 способов.

Слайд 43: Презентация Элементы комбинаторики
Слайд 43

Задача № 4. Имеются три плитки шоколада различных видов. Катя и Оля по очереди выбирают себе по одной плитке. Сколько существует различных способов выбора шоколадок для Кати и Оли?

Слайд 44: Презентация Элементы комбинаторики
Слайд 44

Задача № 4. (решение) Допустим первой шоколадку выбирает Катя. У нее есть 3 возможности выбора плитки (n=3). После этого Оля может выбрать одну из двух оставшихся плиток (m=2). Тогда способов выбрать пару шоколадок для Кати и для Оли существует n·m=3·2=6. Ответ: 6 способов.

Слайд 45: Презентация Элементы комбинаторики
Слайд 45

Задача № 5. Сколько существует различных двузначных кодов, составленных с помощью букв А, Б, В, Г и Д, если буквы в коде: 1) могут повторяться; 2) должны быть различными?

А Б В Г Д

Слайд 46: Презентация Элементы комбинаторики
Слайд 46

Задача № 5. (решение) 1) Первой в коде может быть любая из данных букв (n=5), а второй – также любая из пяти (m=5). Согласно правилу произведения число всевозможных букв (с возможным их повторением в паре) равно n·m=5·5=25.

Слайд 47: Презентация Элементы комбинаторики
Слайд 47

Задача № 5. (решение) 2) Первой в коде может быть любая из пяти данных букв (n=5), а второй – любая из четырех, отличных от первой (m=4). Согласно правилу произведения число двузначных кодов с различными буквами будет равно n·m=5·4=20. Ответ: 1) 25; 2) 20.

Слайд 48: Презентация Элементы комбинаторики
Слайд 48

§3 «Таблица вариантов и правило произведения» На уроках решаются задачи №№ 3, 5, 7, 9, 11. Домашнее задание №№ 2, 4, 6, 8, 10, 12.

Слайд 49: Презентация Элементы комбинаторики
Слайд 49

Урок № 6 Тема урока: «Подсчет вариантов с помощью графов»

Перебрать и подсчитать всевозможные комбинации из данных элементов несложно, когда их количество невелико. Однако, когда их количество больше, например, 20, то при переборе легко упустить какую-либо из них. Нередко подсчет вариантов облегчают графы. Графы – геометрические фигуры, состоящие из точек (их называют вершинами) и соединяющих их отрезков (называемых ребрами графа).

Слайд 50: Презентация Элементы комбинаторики
Слайд 50

Подсчет вариантов с помощью графов

Приведем примеры различных графов

1 2 4 A B C D E Иван Борис Татьяна Ольга Сергей Галина

Слайд 51: Презентация Элементы комбинаторики
Слайд 51

Полный граф

Задача № 1 Андрей, Борис, Виктор и Григорий играли в шахматы. Каждый сыграл с каждым по одной партии. Сколько партий было сыграно? Решим задачу с помощью полного графа. Вершины – первые буквы имен мальчиков, а отрезки-ребра обозначают шахматные партии.

Слайд 52: Презентация Элементы комбинаторики
Слайд 52

А Б В Г

Из рисунка видно, что граф имеет 6 ребер, значит, и партий было сыграно 6. Ответ: 6 партий.

Слайд 53: Презентация Элементы комбинаторики
Слайд 53

Задача № 2 Андрей, Борис, Виктор и Григорий после возвращения из спортивного лагеря подарили на память друг другу свои фотографии. Причем каждый мальчик подарил каждому по одной фотографии. Сколько всего фотографий было подарено?

Слайд 54: Презентация Элементы комбинаторики
Слайд 54

С помощью стрелок на ребрах полного графа с вершинами А, Б, В и Г показан процесс обмена фотографиями. Очевидно, что стрелок в 2 раза больше, чем ребер, т. е. 6·2=12. Столько же было подарено фотографий. Ответ: 12 фотографий.

Слайд 55: Презентация Элементы комбинаторики
Слайд 55

Граф - дерево

Задача № 3 Антон, Борис и Василий купили 3 билета на футбольный матч на 1, 2 и 3-е места первого ряда. Сколькими способами они могут занять имеющиеся три места?

Слайд 56: Презентация Элементы комбинаторики
Слайд 56

Способы 1 место 2 место 3 место

Упорядоченные тройки

АБВ АВБ БАВ БВА ВАБ ВБА

Ответ: 6 способов.

Слайд 57: Презентация Элементы комбинаторики
Слайд 57

Задача № 4 Сколько различных трехзначных чисел можно записать с помощью цифр 0, 1, 2, если цифры в числе могут повторяться? 213 543 753 849 109 760 376 934 875 777 201

213 543 753 849 109 760 376 934 875 777

Слайд 58: Презентация Элементы комбинаторики
Слайд 58

Варианты 0

Образовавшееся число 100 101 102 110 111 112 120 121 122 200 201 202 210 211 212 220 221 222

Ответ: 18 чисел

Слайд 59: Презентация Элементы комбинаторики
Слайд 59

§ 4 «Подсчет вариантов с помощью графов» На уроках решаются задачи №№ 3, 5, 7, 9, 11. Домашнее задание №№ 2, 4, 6, 8, 10, 12.

Слайд 60: Презентация Элементы комбинаторики
Слайд 60

Контрольная работа

1 вариант С помощью цифр 7, 8 и 9 записать всевозможные двузначные числа, в которых цифры: а) должны быть разными; б) могут повторяться. Анна, Белла и Вера купили билеты в кинотеатр на 1, 2 и 3-е места первого ряда. Перечислить все возможные способы, которыми девочки могут занять эти места. У лесника три собаки: Астра, Вега и Гриф. На охоту лесник решил пойти с двумя собаками. Перечислить все варианты выбора лесником пары собак.

Слайд 61: Презентация Элементы комбинаторики
Слайд 61

2 вариант Перечислить все двузначные числа, в записи которых используются только цифры 8, 9 и 0, если: а) одинаковых цифр в числах не должно быть; б) цифры в числах могут повторяться. Из трех стаканов сока – ананасового, брусничного и виноградного – Иван решил последовательно выпить два. Перечислить все варианты, которыми это можно сделать. У Марии 3 юбки и 5 кофт, удачно сочетающихся по цвету. Сколько различных комбинаций из юбок и кофт имеется у Марии?

Список похожих презентаций

  • Яндекс.Метрика
  • Рейтинг@Mail.ru