- Основы комбинаторики

Презентация "Основы комбинаторики" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54

Презентацию на тему "Основы комбинаторики" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 54 слайд(ов).

Слайды презентации

§ 1. Примеры комбинаторных задач и общие принципы комбинаторики
Слайд 1

§ 1. Примеры комбинаторных задач и общие принципы комбинаторики

Правило произведения Пусть объект а1 можно выбрать n1, различными способами, после каждого выбора объекта а1 объект а2 можно выбрать n2 различными способами,..., после каждого выбора объектов а1, а2,..., аp-1 объект аp можно выбрать nр различными способами. Тогда количество способов, которыми можно
Слайд 2

Правило произведения Пусть объект а1 можно выбрать n1, различными способами, после каждого выбора объекта а1 объект а2 можно выбрать n2 различными способами,..., после каждого выбора объектов а1, а2,..., аp-1 объект аp можно выбрать nр различными способами. Тогда количество способов, которыми можно выбрать а1, а2, ..., аp равно n1n2...np.

Составление слова из восьми букв можно представить как заполнение буквами клеток следующей таблицы: 1 2 3 4 5 6 7 8 На первое место можно поставить любую из восьми букв, на второе - любую из семи оставшихся и т.д. вплоть до заполнения единственным способом клетки № 8 последней оставшейся буквой. Чис
Слайд 3

Составление слова из восьми букв можно представить как заполнение буквами клеток следующей таблицы: 1 2 3 4 5 6 7 8 На первое место можно поставить любую из восьми букв, на второе - любую из семи оставшихся и т.д. вплоть до заполнения единственным способом клетки № 8 последней оставшейся буквой. Число способов заполнения таблицы будет равно 8·7·6·5·4·3·2·1=8! Напомним, что символом п! (читается «эн факториал») обозначается произведение всех натуральных чисел от 1 до п: n!=1·2·...·(n-1)·n. Ответ: n!= 1 • 2 • ...• (n -1) • п.

Пример 2. Сколько четырехбуквенных «слов» можно составить из карточек «в», «е», «ч», «н», «о», «с», «т», «ь»? Пусть ак - к -я буква слова (к =1,2,3,4). Тогда n1 = 8,n2 = 7, n3=6, nА = 5 и по правилу произведения сразу получаем ответ: 8·7·6·5 = 1680. Ответ: 1680.
Слайд 4

Пример 2. Сколько четырехбуквенных «слов» можно составить из карточек «в», «е», «ч», «н», «о», «с», «т», «ь»?

Пусть ак - к -я буква слова (к =1,2,3,4). Тогда n1 = 8,n2 = 7, n3=6, nА = 5 и по правилу произведения сразу получаем ответ: 8·7·6·5 = 1680. Ответ: 1680.

Пример 3. Сколькими способами можно поставить на шахматную доску белую и черную ладью так, чтобы они не били друг друга?
Слайд 5

Пример 3. Сколькими способами можно поставить на шахматную доску белую и черную ладью так, чтобы они не били друг друга?

Выбор объекта а1 - поля для белой ладьи - может быть сделан n1 = 64 способами. Независимо от выбора этого поля белая ладья бьет 15 полей, поэтому для черной ладьи остается 64-15 =49 полей: n2 = 49. Ответ: число расстановок ладей равно 64 · 49 = 3136.
Слайд 6

Выбор объекта а1 - поля для белой ладьи - может быть сделан n1 = 64 способами. Независимо от выбора этого поля белая ладья бьет 15 полей, поэтому для черной ладьи остается 64-15 =49 полей: n2 = 49. Ответ: число расстановок ладей равно 64 · 49 = 3136.

Пример 5. Сколь различных слов можно получить, переставляя буквы слова «комбинаторика»?
Слайд 7

Пример 5. Сколь различных слов можно получить, переставляя буквы слова «комбинаторика»?

В слове «комбинаторика» 13 букв. Если бы все они были различны, то, переставляя их, можно было бы получить 13! слов. Но в нашем слове буквы к, о, и, а встречаются по два раза. Обозначим их к1,к2,о1,о2,и1,и2,а1,а2. Ясно, что слова, отличающиеся перестановкой букв к1ик2 - одинаковые, так что 13! Слов
Слайд 8

В слове «комбинаторика» 13 букв. Если бы все они были различны, то, переставляя их, можно было бы получить 13! слов. Но в нашем слове буквы к, о, и, а встречаются по два раза. Обозначим их к1,к2,о1,о2,и1,и2,а1,а2. Ясно, что слова, отличающиеся перестановкой букв к1ик2 - одинаковые, так что 13! Слов разбиваются на пары одинаковых. Следовательно, если мы не различаем к1 и к2, то число всех слов будет равно 13!/2!. Но эта совокупность также разбивается на пары одинаковых с точки зрения буквы “о„ слов и т.д. 13! 13! Ответ: = = —. 2!2!2!2! 16

Пример 6. Сколько существует четырехзначных чисел, у которых все цифры нечетные? Сколько существует четырехзначных чисел, в записи которых есть хотя бы одна четная цифра?
Слайд 9

Пример 6. Сколько существует четырехзначных чисел, у которых все цифры нечетные? Сколько существует четырехзначных чисел, в записи которых есть хотя бы одна четная цифра?

Всего нечетных цифр — пять, поэтому выбор к-й цифры числа может быть сделан nк =5 способами (к =1, 2, 3, 4) а количество четырехзначных чисел, у которых все цифры нечетные, равно 5·5·5·5 = 625.
Слайд 10

Всего нечетных цифр — пять, поэтому выбор к-й цифры числа может быть сделан nк =5 способами (к =1, 2, 3, 4) а количество четырехзначных чисел, у которых все цифры нечетные, равно 5·5·5·5 = 625.

Правило суммы. Если объект а можно выбрать т различными способами, а объект b можно выбрать n различными способами, причем результаты выбора объектов а и b никогда не совпадают, то выбор “либо а, либо b» можно осуществить т + n различными способами.
Слайд 11

Правило суммы

Если объект а можно выбрать т различными способами, а объект b можно выбрать n различными способами, причем результаты выбора объектов а и b никогда не совпадают, то выбор “либо а, либо b» можно осуществить т + n различными способами.

Пример 7. Сколько различных пар можно образовать из 28 костей домино так, чтобы кости, входящие в пару, можно было приложить друг к другу?
Слайд 12

Пример 7. Сколько различных пар можно образовать из 28 костей домино так, чтобы кости, входящие в пару, можно было приложить друг к другу?

Выбор пары костей — это выбор двух карточек вида a1b1, a2b2, где можно считать, что а ≤ b. Выберем первую кость - это можно сделать 28 способами, из них в 7 случаях кость окажется дублем, т.е. кость вида aa, а в 21 случае — кость вида ab, а
Слайд 13

Выбор пары костей — это выбор двух карточек вида a1b1, a2b2, где можно считать, что а ≤ b. Выберем первую кость - это можно сделать 28 способами, из них в 7 случаях кость окажется дублем, т.е. кость вида aa, а в 21 случае — кость вида ab, а

§ 2. Размещения и перестановки
Слайд 14

§ 2. Размещения и перестановки

Определение. Всякая упорядоченная выборка объема k из множества, состоящего из n элементов, называется размещением из n элементов по k элементов и обозначается через Аn . k
Слайд 15

Определение. Всякая упорядоченная выборка объема k из множества, состоящего из n элементов, называется размещением из n элементов по k элементов и обозначается через Аn .

k

Определение. Размещение из n элементов по n называется перестановкой из n элементов и обозначается через Рn .
Слайд 16

Определение. Размещение из n элементов по n называется перестановкой из n элементов и обозначается через Рn .

Справедлива формула Аn =n (n-1)...(n - к + 1). где 1 ≤ к ≤ n.
Слайд 17

Справедлива формула Аn =n (n-1)...(n - к + 1)

где 1 ≤ к ≤ n.

На первое место в выборке можно поместить любой из n элементов, на второе - любой из (n - 1) оставшихся и т.д. После выбора элементов на(k-1)-е место останется n-(к-1) = n-к+1 элемен- 1 2 k-1 k тов, любой из которых можно поместить на к-е место. По правилу произведения получаем Аn = (n-1)...(n - к +
Слайд 18

На первое место в выборке можно поместить любой из n элементов, на второе - любой из (n - 1) оставшихся и т.д. После выбора элементов на(k-1)-е место останется n-(к-1) = n-к+1 элемен- 1 2 k-1 k тов, любой из которых можно поместить на к-е место. По правилу произведения получаем Аn = (n-1)...(n - к + 1) В частности, Рn=An =n(n-1)… ·2·1 = n! (2)

n

An = n(n - 1)...(n - k+1)·(n-k)!= n! (n-к)! (n-к)!
Слайд 19

An = n(n - 1)...(n - k+1)·(n-k)!= n! (n-к)! (n-к)!

Пример 9. Сколько шестизначных чисел, кратных 5, можно составить из цифр 0, 1,2, ..., 9 при условии, что цифры в записи числа не повторяются?
Слайд 20

Пример 9. Сколько шестизначных чисел, кратных 5, можно составить из цифр 0, 1,2, ..., 9 при условии, что цифры в записи числа не повторяются?

Последней цифрой искомого числа может быть 0 или 5. В первом случае остальные пять цифр можно выбирать из множества {1,2, ..., 9} 9! и число вариантов равно А9 = — = 15120. Если число 4! oканчивается цифрой 5, то в качестве первой цифры можно взять любую из восьми цифр 1, 2, 3, 4, 6, 7, 8, 9 - нельз
Слайд 21

Последней цифрой искомого числа может быть 0 или 5. В первом случае остальные пять цифр можно выбирать из множества {1,2, ..., 9} 9! и число вариантов равно А9 = — = 15120. Если число 4! oканчивается цифрой 5, то в качестве первой цифры можно взять любую из восьми цифр 1, 2, 3, 4, 6, 7, 8, 9 - нельзя использовать 0, т.к. число должно быть шестизначным. Цифры со второй по четвертую можно выбрать A8 = 1680 различными способами. Следовательно, по правилу произведения имеется 8·A8 чисел, оканчивающихся цифрой 5. По правилу суммы находим, сколько существует чисел, удовлетворяющих условию задачи. А9 +8·A8 = 28560. Ответ: 28560.

5 4

Пример 10. Сколькими способами можно расставить на книжной полке десятитомник Пушкина так, чтобы том 2 стоял рядом с томом 1 и справа от него? Ответ: 9!
Слайд 22

Пример 10. Сколькими способами можно расставить на книжной полке десятитомник Пушкина так, чтобы том 2 стоял рядом с томом 1 и справа от него? Ответ: 9!

§ 3. Сочетания
Слайд 23

§ 3. Сочетания

Определение. Всякая неупорядоченная выборка объема к из множества, состоящего из n элементов (к≤n), называется сочетанием из n элементов по к элементов и обозначается через Сn .
Слайд 24

Определение. Всякая неупорядоченная выборка объема к из множества, состоящего из n элементов (к≤n), называется сочетанием из n элементов по к элементов и обозначается через Сn .

Из любого набора,содержащего к элементов, можно с помощью перестановок получить k! упорядоченных выборок объема k, поэтому Откуда (4)
Слайд 25

Из любого набора,содержащего к элементов, можно с помощью перестановок получить k! упорядоченных выборок объема k, поэтому Откуда (4)

Основы комбинаторики Слайд: 26
Слайд 26
Пример 11. Хоккейная команда состоит из 2 вратарей, 7 защитников и 10 нападающих. Сколькими способами тренер может образовать стартовую шестерку, состоящую из вратаря, двух защитников и трех нападающих?
Слайд 27

Пример 11. Хоккейная команда состоит из 2 вратарей, 7 защитников и 10 нападающих. Сколькими способами тренер может образовать стартовую шестерку, состоящую из вратаря, двух защитников и трех нападающих?

Вратаря можно выбрать способами, защитников - способом, нападающих – способами. Всего, по правилу произведения, существует 2 · 21 · 120 = 5040 способов выбора стартовой шестерки. Ответ: 5040.
Слайд 28

Вратаря можно выбрать способами, защитников - способом, нападающих – способами. Всего, по правилу произведения, существует 2 · 21 · 120 = 5040 способов выбора стартовой шестерки. Ответ: 5040.

Пример 12. На плоскости проведены n прямых, среди которых нет ни одной пары параллельных прямых и ни одной тройки прямых, пересекающихся в одной точке. Найти число точек пересечения этих прямых и число треугольников, образованных этими прямыми.
Слайд 29

Пример 12. На плоскости проведены n прямых, среди которых нет ни одной пары параллельных прямых и ни одной тройки прямых, пересекающихся в одной точке. Найти число точек пересечения этих прямых и число треугольников, образованных этими прямыми.

Число точек пересечения прямых равно числу способов выбора неупорядоченной пары прямых, т.е. . Аналогично, каждый треугольник определяется тройкой прямых, поэтому общее число треугольников равно . Ответ: и .
Слайд 30

Число точек пересечения прямых равно числу способов выбора неупорядоченной пары прямых, т.е. . Аналогично, каждый треугольник определяется тройкой прямых, поэтому общее число треугольников равно . Ответ: и .

Пример 13. Для проведения письменного экзамена по комбинаторике надо составить 4 варианта по 7 задач в каждом. Сколькими способами можно разбить 28 задач на 4 варианта?
Слайд 31

Пример 13. Для проведения письменного экзамена по комбинаторике надо составить 4 варианта по 7 задач в каждом. Сколькими способами можно разбить 28 задач на 4 варианта?

Задачи для первого варианта можно выбрать способами. После этого останется 21 задача, так что второй вариант можно составить способами. Для третьего варианта задачи можно выбрать способами, а для четвертого - = 1 способом.
Слайд 32

Задачи для первого варианта можно выбрать способами. После этого останется 21 задача, так что второй вариант можно составить способами. Для третьего варианта задачи можно выбрать способами, а для четвертого - = 1 способом.

По правилу произведения получаем число . Но так как варианты равноправны, то полученное число надо разделить на 4! Ответ: =
Слайд 33

По правилу произведения получаем число . Но так как варианты равноправны, то полученное число надо разделить на 4! Ответ: =

Свойства чисел : 1°. , если 0≤к≤n; 2°. , если 0≤к≤n+1; 3°.
Слайд 34

Свойства чисел : 1°. , если 0≤к≤n; 2°. , если 0≤к≤n+1; 3°.

Свойство 1°
Слайд 35

Свойство 1°

Свойство 2°
Слайд 36

Свойство 2°

Основы комбинаторики Слайд: 37
Слайд 37
Треугольник Паскаля:
Слайд 38

Треугольник Паскаля:

Свойство 3° Положим Так как каждое число строки с номером п входит в качестве слагаемого в два соседних числа следующей строки, то Sn+1 = 2Sn . Следовательно, т.к. S0=1.
Слайд 39

Свойство 3° Положим Так как каждое число строки с номером п входит в качестве слагаемого в два соседних числа следующей строки, то Sn+1 = 2Sn . Следовательно, т.к. S0=1.

§ 4. Бином Ньютона
Слайд 40

§ 4. Бином Ньютона

(a + b) =a +2ab + b и (a + b) = а +3а b + 3ab +b .
Слайд 41

(a + b) =a +2ab + b и (a + b) = а +3а b + 3ab +b .

Основы комбинаторики Слайд: 42
Слайд 42
Если в формуле (5) взять а =b = 1, то получится известное нам свойство 3° чисел , а если взять а=1, b = -1, то получим еще одно комбинаторное равенство:
Слайд 43

Если в формуле (5) взять а =b = 1, то получится известное нам свойство 3° чисел , а если взять а=1, b = -1, то получим еще одно комбинаторное равенство:

Основы комбинаторики Слайд: 44
Слайд 44
Формула (6) называется полиномиальной. Например, (а + b + с) = а + b + с + 3(а b + а с + b а + b с + с а + c b ) + 6abc.
Слайд 45

Формула (6) называется полиномиальной. Например, (а + b + с) = а + b + с + 3(а b + а с + b а + b с + с а + c b ) + 6abc.

Пример 14. Найти n, если известно, что в разложении (1 + x) коэффициенты при х и х равны.
Слайд 46

Пример 14. Найти n, если известно, что в разложении (1 + x) коэффициенты при х и х равны.

В n-й строке треугольника Паскаля два коэффициента равны в том и только том случае, когда они занимают клетки, равноудаленные от крайних. Действительно, треугольник Паскаля симметричен: , а при движении от края к середине строки коэффициенты возрастают: при и при
Слайд 47

В n-й строке треугольника Паскаля два коэффициента равны в том и только том случае, когда они занимают клетки, равноудаленные от крайних. Действительно, треугольник Паскаля симметричен: , а при движении от края к середине строки коэффициенты возрастают: при и при

Следовательно, равно тогда и только тогда, когда 12 = n-5, т.е. n= 17. Ответ: n = 17.
Слайд 48

Следовательно, равно тогда и только тогда, когда 12 = n-5, т.е. n= 17. Ответ: n = 17.

Пример 15. Найти коэффициент при х в разложении (1 + х +х ) .
Слайд 49

Пример 15. Найти коэффициент при х в разложении (1 + х +х ) .

В силу формулы (6) = Так как уравнение 5k2 + 9к3 =19 имеет только одно решение в неотрицательных числах k2=2, k3 = 1, то коэффициент при х равен
Слайд 50

В силу формулы (6) = Так как уравнение 5k2 + 9к3 =19 имеет только одно решение в неотрицательных числах k2=2, k3 = 1, то коэффициент при х равен

2) Обозначим через . Тогда Рассмотрим k-е слагаемое (0≤k≤30): Такое слагаемое будет содержать х , если для некоторого т выполняется равенство 5k + 4m = 19. Ясно, что это возможно только при k=3 и т=1. Следовательно, коэффициент при х равен =12180.
Слайд 51

2) Обозначим через . Тогда Рассмотрим k-е слагаемое (0≤k≤30): Такое слагаемое будет содержать х , если для некоторого т выполняется равенство 5k + 4m = 19. Ясно, что это возможно только при k=3 и т=1. Следовательно, коэффициент при х равен =12180.

Литература 1.	Кутасова А.Д., Пиголкина Т.С, Чехлов В.И., Яковлева Т.Х., Пособие по математике для поступающих в вузы. /под ред. Г.Н. Яковлева - M.: Наука, 1988. 2.	Виленкин Н.Я. Популярная комбинаторика. — М.: Наука, 1975. 3.	Генкин С.А., Итенберг И.В., Фомин Д.В. Ленинградские математические кружки
Слайд 52

Литература 1. Кутасова А.Д., Пиголкина Т.С, Чехлов В.И., Яковлева Т.Х., Пособие по математике для поступающих в вузы. /под ред. Г.Н. Яковлева - M.: Наука, 1988. 2. Виленкин Н.Я. Популярная комбинаторика. — М.: Наука, 1975. 3. Генкин С.А., Итенберг И.В., Фомин Д.В. Ленинградские математические кружки. — Киров, 1994.

Контрольные вопросы Сколько делителей у числа 2004 ? Сколько диагоналей в выпуклом 2004-угольнике? Сколько различных натуральных решений имеет неравенство n+m≤2004? 4.	Чему равен коэффициент при х y в выражении (х + у) после раскрытия скобок? 5.	С помощью соответствующей строки треугольника Паскаля
Слайд 53

Контрольные вопросы Сколько делителей у числа 2004 ? Сколько диагоналей в выпуклом 2004-угольнике? Сколько различных натуральных решений имеет неравенство n+m≤2004? 4. Чему равен коэффициент при х y в выражении (х + у) после раскрытия скобок? 5. С помощью соответствующей строки треугольника Паскаля выпишите формулу для вычисления (а-b) .

Задачи 1(3). Сколько различных слов можно получить, переставляя буквы в слове «параллелограмм»? 2(4). Сколькими способами можно переставлять буквы слова «раз-­ мещение» так, чтобы три буквы «е» не шли подряд? 3(3). Решите уравнение 4(3). Известно, что никакие три диагонали выпуклого восьмиуголь­ника
Слайд 54

Задачи 1(3). Сколько различных слов можно получить, переставляя буквы в слове «параллелограмм»? 2(4). Сколькими способами можно переставлять буквы слова «раз-­ мещение» так, чтобы три буквы «е» не шли подряд? 3(3). Решите уравнение 4(3). Известно, что никакие три диагонали выпуклого восьмиуголь­ника не пересекаются в одной точке. Найдите число точек пе­ресечения диагоналей. 5(4). Сколькими способами можно поставить на шахматную доску белого и черного слонов так, чтобы они не били друг друга? 6(5). Найдите сумму всех трехзначных чисел, которые можно напи­сать с помощью цифр 1, 2, 3, 4, 5 (любую из цифр можно ис­пользовать несколько раз). 7(5). Докажите тождество 8(6).Сколькими способами можно распределить 12 различных книг по четырем полкам так, чтобы на каждой полке ока­залась ровно три книги? 9(6). Сколькими способами можно распределить 12 одинако­вых книг по четырем полкам так, чтобы на каждой полке была хотя бы одна книга? В задачах №8 и №9 все полки разные. 10(6). В выпуклом восьмиугольнике проведены все диагона­ли, причем известно, что никакие три диагонали не пере­секаются в одной точке. На сколько частей разделится восьмиугольник? 11(6). Найдите наибольший коэффициент многочлена (1 + 2х) . 12(6). Найдите коэффициент при х в разложении по степе ням х 1+(1+x)+…+(1+x) .

Список похожих презентаций

Понятие комбинаторики

Понятие комбинаторики

. Цели и задачи. Знакомство с новым разделом математики Рассмотреть все тонкости этого раздела Научиться решать задачи по комбинаторике. Комбинаторика ...
Элементы комбинаторики

Элементы комбинаторики

Введение в комбинаторику. Разработка уроков для7класса. Работа выполнена учителем математики высшей категории Вашкевич Татьяной Сергеевной. Основная ...
Основы теории вероятности

Основы теории вероятности

Основные понятия теории вероятностей. Событием называется любой исход опыта, различают следующие виды событий: - случайные - достоверные - невозможные ...
Основы тригонометрии

Основы тригонометрии

Этапы развития тригонометрии. Тригонометрия в древности являлась вспомогательным разделом астрономии. Древнегреческие ученые разработали «тригонометрию ...
Основы логики. Алгебра высказываний

Основы логики. Алгебра высказываний

Логика. Логика – это наука о формах и способах мышления, позволяющая строить формальные модели окружающего мира, отвлекаясь от содержательной стороны. ...
Основы многомерных методов анализа. Факторный анализ

Основы многомерных методов анализа. Факторный анализ

Методы многомерного анализа (multivariate analyses) Предназначены для анализа многомерных данных. Много независимых переменных – Многофакторная ANOVA ...
Основы концепции “глубинного анализа текстов

Основы концепции “глубинного анализа текстов

Контент-анализ: определения. Один из истоков концепции Text Mining – контент-анализ. Понятие контент-анализа, корни которого в психологии и социологии, ...
Основы логики

Основы логики

Комбинаторика Классификация Сравнение Анализ Синтез. КОМБИНАТОРИКА –. перебор возможных вариантов. Из цифр 1, 2, 3 составить возможные двузначные ...
Основы высшей математики и математической статистики

Основы высшей математики и математической статистики

Учебники:. Н.Л. Лобоцкая и др. Высшая математика. Мн.1987г. Морозов Ю.В. Основы высшей математики и статистики. М. 1998г. И.В. Павлушков и соавт. ...
Основы геометрического практикума при изучении математики

Основы геометрического практикума при изучении математики

ОКР.(О;3СМ.5ММ). Мы начертили окружность с центром в точке О и радиусом 3 см 5 мм, провели прямую, которая пересекает окружность в точке М и К. о ...
Основы бизнес-математики

Основы бизнес-математики

Дидактическая цель: Представить учащимся краткий исторический очерк развития рынка; Показать, что математические величины и зависимости – отображение ...
Основные принципы комбинаторики

Основные принципы комбинаторики

Комбинаторика. Комбинаторика – раздел математики, посвященный подсчету количеств разных комбинаций элементов некоторого, обычно конечного, множества ...
Основные понятия комбинаторики

Основные понятия комбинаторики

Содержание. Введение Понятия Правила Задачи Факториал Задачи. Введение. Комбинаторика очень важна в нашей жизни, потому что она имеет широкий спектр ...
Элементы комбинаторики

Элементы комбинаторики

Принцип произведения комбинаций. N = n1 ∙ n2 ∙ … ∙ nk. Пусть имеется k групп элементов, причем i-я группа содержит ni элементов, 1 ≤ i ≤ k. Выберем ...
Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Содержание. Введение Пример 1. Учительница подготовила к контрольной работе… Решения: 1.а)    1.б) 1.в) 1.г) Пример 2. Известно, что х = 2аЗb5с и а, ...
Методика изучения элементов комбинаторики в условиях профильного обучения математике

Методика изучения элементов комбинаторики в условиях профильного обучения математике

Содержание. Введение Глава 1. Цели изучения стохастической линии в школе 1) Из истории комбинаторики 2) Цели изучения стохастики в школе Глава 2. ...
Некоторые теоретико-числовые приложения комбинаторики

Некоторые теоретико-числовые приложения комбинаторики

Примеры. Числа 2, 3, 5, 7, 11 простые, числа 4, 6, 18, 100 составные. Отметим, что число 1 не является ни простым, ни составным. Существует стандартная ...
Куда пропала математика?

Куда пропала математика?

Замочек №1. Задача 1. Часто знает и дошкольник, Что такое треугольник. А уж вам-то как не знать! Но совсем другое дело: Очень быстро и умело Треугольники ...
Интересная математика

Интересная математика

Франция Герб Франции Флаг Франции. . Страна граничит с 8 странами: Италией, Испанией, Бельгией, Люксембургом, Германией, Швейцарией, Монако и Андоррой. ...
Конкурсный урок математика

Конкурсный урок математика

У Ромы не «3», а у Лены не «3» и не «5». Кто какую отметку получил? Проверь себя! 4 5. Запомни! . . Какую из этих схем составила Таня? I способ: 90 ...

Конспекты

Элементы комбинаторики, статистики и теории вероятности

Элементы комбинаторики, статистики и теории вероятности

Урок-соревнование. по разделу. «Решение задач по теме «Элементы комбинаторики, статистики и теории вероятности». г.Новороссийск, ...
Основы тригонометрии

Основы тригонометрии

Учитель математики первой категории Славкина Надежда Владимировна ОСШ №39 имени М.Жумабаева города Шымкента,. . Южно-Казахстанской области. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 января 2019
Категория:Математика
Содержит:54 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации