- Элементы статистики

Презентация "Элементы статистики" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31

Презентацию на тему "Элементы статистики" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 31 слайд(ов).

Слайды презентации

Элементы статистики. Автор: Крячко Н.В. учитель математики МБОУ «Лицей №3 г.Саров Нижегородской области
Слайд 1

Элементы статистики.

Автор: Крячко Н.В. учитель математики МБОУ «Лицей №3 г.Саров Нижегородской области

Слово « статистика» происходит от латинского status ( состояние, положение вещей). 1. Статистика – это научное направление (комплекс наук), объединяющее принципы и методы работы с числовыми данными, характеризующими массовые явления.
Слайд 2

Слово « статистика» происходит от латинского status ( состояние, положение вещей).

1. Статистика – это научное направление (комплекс наук), объединяющее принципы и методы работы с числовыми данными, характеризующими массовые явления.

2. Статистика – это отрасль практической деятельности, направленной на сбор, обработку, анализ статистических данных. 3. Статистика –это совокупность статистических данных, характеризующих какое –нибудь явление или процесс (например, статистика рождаемости и смертности в России, статистика успеваемо
Слайд 3

2. Статистика – это отрасль практической деятельности, направленной на сбор, обработку, анализ статистических данных. 3. Статистика –это совокупность статистических данных, характеризующих какое –нибудь явление или процесс (например, статистика рождаемости и смертности в России, статистика успеваемости учащихся и т.п.).

Случайная величина. Одно из самых важных понятий в теории вероятностей – случайная величина. Случайной величиной называется переменная величина, значения которой зависят от случайного исхода некоторого испытания.
Слайд 4

Случайная величина.

Одно из самых важных понятий в теории вероятностей – случайная величина. Случайной величиной называется переменная величина, значения которой зависят от случайного исхода некоторого испытания.

Статистическая информация о результатах наблюдений или экспериментов может быть представлена в различных формах. Простейшей из них является запись в порядке их появления – запись в ряд: называемый простым статистическим рядом или выборкой.
Слайд 5

Статистическая информация о результатах наблюдений или экспериментов может быть представлена в различных формах. Простейшей из них является запись в порядке их появления – запись в ряд: называемый простым статистическим рядом или выборкой.

Отдельные значения Хi , составляющие этот ряд, называют вариантами или просто данными. Количество вариант в ряду n называют объемом ряда, или объемом выборки. Варианты в ряду могут иметь как различные, так и одинаковые значения.
Слайд 6

Отдельные значения Хi , составляющие этот ряд, называют вариантами или просто данными. Количество вариант в ряду n называют объемом ряда, или объемом выборки. Варианты в ряду могут иметь как различные, так и одинаковые значения.

Игральный кубик бросили 12 раз и записали выпавшие числа в порядке их появления. 3,4,5,6,6,6,5,1,4,6,1,4 ( n = 12 ). Вариантами в ряду являются Варианты имеют одинаковые значения.
Слайд 7

Игральный кубик бросили 12 раз и записали выпавшие числа в порядке их появления

3,4,5,6,6,6,5,1,4,6,1,4 ( n = 12 ). Вариантами в ряду являются Варианты имеют одинаковые значения.

Представим ряд данных 3,4,5,6,6,6,5,1,4,6,1,4 в виде таблицы В первой строке – значение случайной величины Х, во второй – частота значений варианты М.
Слайд 8

Представим ряд данных 3,4,5,6,6,6,5,1,4,6,1,4 в виде таблицы В первой строке – значение случайной величины Х, во второй – частота значений варианты М.

Относительная частота. Относительной частотой события А в данной серии испытаний называют отношение частоты М события А к числу всех проведенных испытаний N. W(A) =
Слайд 9

Относительная частота.

Относительной частотой события А в данной серии испытаний называют отношение частоты М события А к числу всех проведенных испытаний N. W(A) =

Рост каждой из 50 гимнасток одного клуба занесен в таблицу. По имеющимся данным составить таблицу распределения значений роста гимнасток 1) по частотам М; 2) по относительным частотам W.
Слайд 10

Рост каждой из 50 гимнасток одного клуба занесен в таблицу

По имеющимся данным составить таблицу распределения значений роста гимнасток 1) по частотам М; 2) по относительным частотам W.

Полигоны частот. Распределение случайных величин можно задавать и демонстрировать графически. Рассмотрим пример. В первом полугодии 2011 года завод получил прибыль в 10 млн. рублей. Распределение прибыли по месяцам показано в таблице
Слайд 12

Полигоны частот

Распределение случайных величин можно задавать и демонстрировать графически. Рассмотрим пример. В первом полугодии 2011 года завод получил прибыль в 10 млн. рублей. Распределение прибыли по месяцам показано в таблице

В координатной плоскости на оси абсцисс будем отмечать номер месяца (янв. – 1, февр. – 2 и т.д.). На оси ординат будем отмечать прибыль завода (в млн. руб.). Отметим точки (1;1,4),(2;1,3),(3;1,5),(4;2,1),(5;2),(6;1,7) и соединим их последовательно отрезками
Слайд 13

В координатной плоскости на оси абсцисс будем отмечать номер месяца (янв. – 1, февр. – 2 и т.д.). На оси ординат будем отмечать прибыль завода (в млн. руб.). Отметим точки (1;1,4),(2;1,3),(3;1,5),(4;2,1),(5;2),(6;1,7) и соединим их последовательно отрезками

Полученную ломаную линию называют полигоном частот
Слайд 14

Полученную ломаную линию называют полигоном частот

Размах, мода, Медиана. Размах (R) – разность между наибольшим и наименьшим значениями варианты. Мода (Мо) – наиболее часто встречающееся значение варианты в ряду. Медиана ( Ме) – это серединное значение упорядоченного ряда значений случайной величины.
Слайд 15

Размах, мода, Медиана.

Размах (R) – разность между наибольшим и наименьшим значениями варианты. Мода (Мо) – наиболее часто встречающееся значение варианты в ряду. Медиана ( Ме) – это серединное значение упорядоченного ряда значений случайной величины.

Даны таблицы: 1) распределения случайной величины Х – числа прочитанных за каникулы книг 10 девочками по частотам М, 2)распределения по частотам случайной величины У – числа прочитанных книг 9 мальчиками.
Слайд 16

Даны таблицы: 1) распределения случайной величины Х – числа прочитанных за каникулы книг 10 девочками по частотам М, 2)распределения по частотам случайной величины У – числа прочитанных книг 9 мальчиками.

Заданные таблицами распределения величин Х и У могут быть записаны в виде следующих рядов: 3, 3, 3, 4, 4, 5, 5, 5, 8, 12; (1) 3, 3, 4, 4, 4, 4, 5, 6, 7 . (2) Для совокупности (1) R = 12 – 3 =9, Для совокупности (2) R = 7-3=4. В ряду (1) две моды: Мо1=3, Мо2=5. В ряду (2) : Мо = 4.
Слайд 18

Заданные таблицами распределения величин Х и У могут быть записаны в виде следующих рядов: 3, 3, 3, 4, 4, 5, 5, 5, 8, 12; (1) 3, 3, 4, 4, 4, 4, 5, 6, 7 . (2) Для совокупности (1) R = 12 – 3 =9, Для совокупности (2) R = 7-3=4. В ряду (1) две моды: Мо1=3, Мо2=5. В ряду (2) : Мо = 4.

Рассмотрим ряд (1) 3,3,3,4,4,5,5,5,8,12. В ряду (1) 10 членов – четное число. Для него медиана равна среднему арифметическому двух центральных значений пятого и шестого: Ме = (4+5):2=4,5.
Слайд 19

Рассмотрим ряд (1) 3,3,3,4,4,5,5,5,8,12. В ряду (1) 10 членов – четное число. Для него медиана равна среднему арифметическому двух центральных значений пятого и шестого: Ме = (4+5):2=4,5.

Рассмотрим ряд (2) 3, 3, 4, 4, 4, 4, 5, 6, 7. В ряду (2) – нечетное число элементов. Его медиана равна значению центрального пятого члена ряда: Ме=4.
Слайд 20

Рассмотрим ряд (2) 3, 3, 4, 4, 4, 4, 5, 6, 7. В ряду (2) – нечетное число элементов. Его медиана равна значению центрального пятого члена ряда: Ме=4.

Найти размах, моду и медиану. совокупности: -2, 3, 4, -3, 0, 1, 3, -2, -1, 2, -2, 1. Решение: Запишем данные в виде упорядоченного ряда: -3, -2, -2, -2, -1, 0, 1, 1, 2, 3, 3, 4. R = 4 – (-3) = 7. Мо = - 2. Ме= (0+1):2=0,5.
Слайд 21

Найти размах, моду и медиану

совокупности: -2, 3, 4, -3, 0, 1, 3, -2, -1, 2, -2, 1. Решение: Запишем данные в виде упорядоченного ряда: -3, -2, -2, -2, -1, 0, 1, 1, 2, 3, 3, 4. R = 4 – (-3) = 7. Мо = - 2. Ме= (0+1):2=0,5.

Среднее значение. Средним значением случайной величины Х ( Х ) называют среднее арифметическое всех ее значений.
Слайд 22

Среднее значение

Средним значением случайной величины Х ( Х ) называют среднее арифметическое всех ее значений.

Задача. На соревнованиях по фигурному катанию судьи поставили спортсмену следующие оценки: 5,2 5,4 5,5 5,4 5,1 5,1 5,4 5,5 5,3 Для полученного ряда чисел найдите среднее арифметическое, размах, медиану и моду. Что характеризует каждый из этих показателей?
Слайд 23

Задача

На соревнованиях по фигурному катанию судьи поставили спортсмену следующие оценки: 5,2 5,4 5,5 5,4 5,1 5,1 5,4 5,5 5,3 Для полученного ряда чисел найдите среднее арифметическое, размах, медиану и моду. Что характеризует каждый из этих показателей?

Решение: Среднее арифметическое Х~5,32 характеризует средний уровень оценок. Размах А = хmax-хmin=5,5-5,1=0,4 характеризует разброс оценок. Мода Мо=5,4 показывает оценку, которая встречается чаще других. Медиана Ме=5,4 показывает, что половина членов ряда не превосходит по величине 5,4.
Слайд 24

Решение:

Среднее арифметическое Х~5,32 характеризует средний уровень оценок. Размах А = хmax-хmin=5,5-5,1=0,4 характеризует разброс оценок. Мода Мо=5,4 показывает оценку, которая встречается чаще других. Медиана Ме=5,4 показывает, что половина членов ряда не превосходит по величине 5,4.

Выборочная дисперсия D(Х). есть среднее значение квадратов отклонений всех вариант от среднего значения ряда.
Слайд 25

Выборочная дисперсия D(Х)

есть среднее значение квадратов отклонений всех вариант от среднего значения ряда.

Сравнить дисперсии выборок 4,6,8,9,8 и 6,8,10,12,9. 1) n=5; 2) n=5; Дисперсия второй выборки больше.
Слайд 26

Сравнить дисперсии выборок 4,6,8,9,8 и 6,8,10,12,9

1) n=5; 2) n=5; Дисперсия второй выборки больше.

Двух футболистов, один из которых участвовал в пяти игровых сезонах, а другой – в шести, сравнить по результативности и стабильности в забивании голов, если количество мячей, забитых первым футболистом по сезонам образует ряд: 17,21,20,16,15,19, а вторым: 17,20,18,21,14.
Слайд 27

Двух футболистов, один из которых участвовал в пяти игровых сезонах, а другой – в шести, сравнить по результативности и стабильности в забивании голов, если количество мячей, забитых первым футболистом по сезонам образует ряд: 17,21,20,16,15,19, а вторым: 17,20,18,21,14.

Находим числовые характеристики двух выборок: Первый футболист: Второй футболист: Таким образом, оба футболиста показывают одинаковую результативность(среднее число голов за сезон), но первый футболист более стабилен, так как дисперсия первой выборки меньше.
Слайд 28

Находим числовые характеристики двух выборок: Первый футболист: Второй футболист: Таким образом, оба футболиста показывают одинаковую результативность(среднее число голов за сезон), но первый футболист более стабилен, так как дисперсия первой выборки меньше.

Самостоятельная работа «Наибольшее и наименьшее значение. Размах». 1.Укажите наибольшее и наименьшее значение и размах набора чисел : 0;-2;19. 2.Даны два набора чисел: 5;12;25 и 3;6;12;26. В каком из наборов размах больше? 3.Дан набор чисел: 3;5;7. Какое число надо к нему добавить, чтобы размах ново
Слайд 29

Самостоятельная работа «Наибольшее и наименьшее значение. Размах».

1.Укажите наибольшее и наименьшее значение и размах набора чисел : 0;-2;19. 2.Даны два набора чисел: 5;12;25 и 3;6;12;26. В каком из наборов размах больше? 3.Дан набор чисел: 3;5;7. Какое число надо к нему добавить, чтобы размах нового набора стал равен 95. 4.К набору 3;4;5 добавьте ещё одно число, чтобы его наибольшее значение не изменилось. а) выполните требование задачи так, чтобы размах остался прежним. б) выполните требование задачи так, чтобы размах стал больше.

Самостоятельная работа «Среднее арифметическое». 1.На координатной прямой отметьте точки 2;3;7 и их среднее арифметическое. 2.Добавьте к набору чисел 2;3;7 такое число, чтобы среднее арифметическое осталось прежним. 3. .Добавьте к набору чисел 2;3;7 такое число, чтобы среднее арифметическое стало ра
Слайд 30

Самостоятельная работа «Среднее арифметическое».

1.На координатной прямой отметьте точки 2;3;7 и их среднее арифметическое. 2.Добавьте к набору чисел 2;3;7 такое число, чтобы среднее арифметическое осталось прежним. 3. .Добавьте к набору чисел 2;3;7 такое число, чтобы среднее арифметическое стало равным 5. 4.Среднее арифметическое чисел 85;25;68;78 равно 64. Найдите: а) среднее арифметическое - 85; - 25; - 68; - 78; б) среднее арифметическое 170;50;136;156; в) среднее арифметическое 80;20;63;73. 5. В первенстве школы по футболу команда 7А класса провела 17 матчей и забила 32 гола, пропустив при этом 15 мячей. Сколько мячей в среднем попадало в ворота противников этой команды за каждую игру в школьном первенстве?

Самостоятельная работа «Медиана. Мода». 1. Найдите медианы наборов чисел: 686;478;834;706;843;698;549 686;478;834;706;843;698;549;112. 2. Дан набор, в котором число 3 встречается 1 раз, число 4 – десять раз, а число 5 – сто раз. Других чисел в наборе нет. Укажите медиану данного набора. 3. Измеряя в
Слайд 31

Самостоятельная работа «Медиана. Мода».

1. Найдите медианы наборов чисел: 686;478;834;706;843;698;549 686;478;834;706;843;698;549;112. 2. Дан набор, в котором число 3 встречается 1 раз, число 4 – десять раз, а число 5 – сто раз. Других чисел в наборе нет. Укажите медиану данного набора. 3. Измеряя вес семи пришедших на урок учеников, учитель физкультуры получил ряд чисел: 51,53,59,52,55,54,51. Найдите разность между модой и медианой данного ряда. 4. В трёх баскетбольных командах измерили рост игроков. В первой команде средний рост составил 195 см, во второй команде медиана ростов равна 197 см, а в третьей команде самый низкий спортсмен имеет рост 192 см. В каждой команде 7 игроков. Из этих команд решено набрать новую команду, рост игроков в которой не меньше 193 см. Сколько человек наверняка попадут в эту команду?

Список похожих презентаций

Элементы статистики

Элементы статистики

Цели главы:. Представление результатов наблюдений при помощи рисунков и таблиц Построение и интерпретация статистических диаграмм Определение средней ...
Элементы статистики. Теоретическая часть

Элементы статистики. Теоретическая часть

Автор:. Минаева Татьяна Александровна. Учитель:. Демьяненко Ирина Николаевна. Содержание:. 2. Формы представления статистической информации. 3. Числовые ...
Элементы статистики

Элементы статистики

Статистические исследования. Сбор и группировка статистических данных. 6, 5, 4, 0, 4, 5, 7, 9, 1, 6, 8, 7, 9, 5, 8, 6, 7, 2, 5, 7, 6, 3, 4, 4, 5, ...
Элементы статистики

Элементы статистики

Цель проекта:. Обобщить знания по теме «Элементы статистики»,решать задачи по теме. («Алгебра» 7,8 класс, под редакцией С.А.Теляковского). Определение ...
Вводный урок "Элементы математической статистики"

Вводный урок "Элементы математической статистики"

Термин «статистика» произошел от латинского слова «статус» (status), что означает «состояние и положение вещей». Математическая статистика. это наука, ...
Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Элементы математической статистики, комбинаторики и теории вероятностей. Сочетания и размещения. Часть I

Содержание. Введение Пример 1. Учительница подготовила к контрольной работе… Решения: 1.а)    1.б) 1.в) 1.г) Пример 2. Известно, что х = 2аЗb5с и а, ...
Элементы математической статистики

Элементы математической статистики

Содержание. Введение Генеральная совокупность и выборка Способы отбора Статистическое распределение выборки Эмпирическая функция распределения Статистические ...
Элементы правильных многогранников

Элементы правильных многогранников

Содержание:. Цель пректа Термин Многогранники История Платон Платоновы тела Евклид Архимед Архимедовы тела Иоганн Кеплер Космологическая гипотеза ...
Элементы пирамиды

Элементы пирамиды

Цель работы:. 1).Рассмотреть историю создания пирамид 2).Основные элементы пирамид 3).Решить некоторые задачи по теме «Пирамиды» 4).Понять почему ...
Элементы математической статиститки

Элементы математической статиститки

Статистика – дизайн информации. Цель:. Дать понятие генеральной и выборочной совокупности, полигону и гистограмме частот Научиться строить полигон ...
Базовые понятия математической статистики

Базовые понятия математической статистики

Описательная статистика. Локализация Среднее значение Медиана Мода. Дисперсия Перцентиль Межквартильный размах Размах признака Дисперсия Стандартное ...
Общие понятия о симметрии. Элементы симметрии

Общие понятия о симметрии. Элементы симметрии

План. Введение Термин симметрии Элементы симметрии. Введение. При обработке металла под давлением мы имеем дело с поликристаллами. Одним из важных ...
Элементы теории графов

Элементы теории графов

Цели реферата:. Изучить существующие теории графов. Научиться применять эти теории при решении логических задач. Расширить объем нетрадиционных приемов ...
Элементы дифференциального исчисления

Элементы дифференциального исчисления

Дифференциальное исчисление функций одной переменной. 1. Производные 2. Таблица производных 3. Дифференциал 4. Производные и дифференциалы высших ...
Основы высшей математики и математической статистики

Основы высшей математики и математической статистики

Учебники:. Н.Л. Лобоцкая и др. Высшая математика. Мн.1987г. Морозов Ю.В. Основы высшей математики и статистики. М. 1998г. И.В. Павлушков и соавт. ...
Элементы геометрии в начальной школе

Элементы геометрии в начальной школе

Пространственные отношения. Геометрические фигуры. Выпускник 4 класса научится: • описывать взаимное расположение предметов в пространстве и на плоскости; ...
Элементы алгебры

Элементы алгебры

Равенства и неравенства. . . Уравнения. . . . . . Неравенства. . . . . . . Буквенные выражения. ...
Ученик глазами статистики

Ученик глазами статистики

Цель работы:. Составить портрет среднестатистического ученика Демянской средней школы. Задачи: развитие навыка сбора информации обобщение и анализ ...
Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильного многогранника

Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильного многогранника

Цель урока: Ознакомление с понятием симметрии в пространстве и с понятием правильного многогранника. Задачи урока: Ввести понятие правильного многогранника, ...
Первичные описательные статистики

Первичные описательные статистики

Задача. Возраст педагогических работников (в годах): 18; 38; 40; 28; 29; 26; 38; 34; 22; 28; 30; 22; 23; 35; 33; 27; 24; 30; 32; 49; 37; 28; 25; 29; ...

Конспекты

Элементы комбинаторики, статистики и теории вероятности

Элементы комбинаторики, статистики и теории вероятности

Урок-соревнование. по разделу. «Решение задач по теме «Элементы комбинаторики, статистики и теории вероятности». г.Новороссийск, ...
Элементы теории вероятности и математической статистики

Элементы теории вероятности и математической статистики

Управление образования г.Астаны. ИПК и ПК СО. ГУ «Средняя школа № 36». Урок алгебры в 9 классе по теме: «Элементы теории вероятности ...
Элементы математической статистики и теории вероятности

Элементы математической статистики и теории вероятности

Тема урока:.  Элементы математической статистики и теории вероятности. Основные цели и задачи урока:.  Повторить основные понятия изучаемого предмета: ...
Элементы устного народного творчества в изучении чисел на уроках математики

Элементы устного народного творчества в изучении чисел на уроках математики

Учитель:. Ушакова Светлана Николаевна. Место работы:. МОУ средняя школа №10 с углубленным изучением отдельных предметов. Должность:. учитель начальных ...
Элементы теории вероятности в ГИА

Элементы теории вероятности в ГИА

13 апреля 2011г. Урок алгебры в 9 классе по теме:. . «Элементы теории вероятности в ГИА». Цели:. - Научиться анализировать и решать задачи ...
Элементы комбинаторики: перестановки, сочетания и размещения

Элементы комбинаторики: перестановки, сочетания и размещения

Хакимзянова Нурания Идерисовна. МБОУ «Кубянская сош» Атнинского муниципального района РТ. Учитель математики и информатики. Урок по теме "Элементы ...
Французский шик описательной статистики и случайной изменчивости в изучении человека

Французский шик описательной статистики и случайной изменчивости в изучении человека

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ. . ГОРОДА МОСКВЫ. СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ «ШКОЛА ЗДОРОВЬЯ» № 384. им. Д.К. Корнеева. ...
Множество. Элементы множества. Подмножество

Множество. Элементы множества. Подмножество

Муниципальное общеобразовательное учреждение. Перхушковская основная общеобразовательная школa. Конспект урока по информатике ...
Многоугольники. Элементы многоугольника. Периметр многоугольника

Многоугольники. Элементы многоугольника. Периметр многоугольника

Разработка урока по математике. 2 класс. Тема: «Многоугольники. Элементы многоугольника. Периметр многоугольника.». Цель:. формирование умения ...
Многогранник. Элементы многогранника - грани, вершины, ребра

Многогранник. Элементы многогранника - грани, вершины, ребра

Технологическая карта урока. Математика, 4 класс «Б», учитель Сидорова О.А. Тема:. Многогранник. Элементы многогранника - грани, вершины, ребра. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Математика
Содержит:31 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации