- Организация повторения по алгебре в 11 профильном классе для подготовки к решению заданий С3 в ЕГЭ

Организация повторения по алгебре в 11 профильном классе для подготовки к решению заданий С3 в ЕГЭ

Муниципальное бюджетное общеобразовательное учреждение лицей № 6

городского округа Тольятти



Методическая разработка

«Организация повторения по алгебре

в 11 профильном классе

для подготовки к решению заданий С3 в ЕГЭ»




Подготовила

Овчинникова Наталья Александровна,

учитель математики высшей категории

МБУ лицея №6 г. о. Тольятти






















Тольятти

2014

Тема «Организация повторения по алгебре в 11 профильном классе

для подготовки к решению заданий С3 в ЕГЭ»

Система уроков повторения по теме «Решение неравенств функционально – графическим методом» содержит: примерное планирование учебного времени; краткий анализ знаний и умений учащихся, полученных на уроках повторения по выбранной теме; план-конспект одного из уроков; проверочную работу (в одном варианте).



  1. Примерное планирование учебного времени

  1. Использование области определения функций.(1 час)

  2. Использование монотонности функций.(1 час)

  3. Использование ограниченности функций. (2 часа)

  4. Метод интервалов для непрерывных функций. (2 часа)

  5. Использование графиков функций. (1 час)

  6. Проверочная работа. (1 час)


  1. Краткий анализ и умений знаний учащихся, полученных на уроках повторения по выбранной теме.

В результате повторения данной темы учащиеся должны иметь четкое представление о возможностях функционально-графического подхода к решению неравенств.

Уметь:

  • решать неравенства с использованием области определения входящих в них функций, свойства монотонности функций;

  • использовать при решении неравенств свойство ограниченности функции на некотором множестве, уметь находить наибольшее и наименьшее значение функций или их композиций на заданном множестве;

  • применять метод интервалов при решении неравенств, содержащих различные функции, а также при решении трансцендентных неравенств, используя идею рационализации неравенств;

  • уметь при решении неравенств рассмотреть эскиз графиков их правой и левой частей в одной и той же системе координат. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение неравенства было очевидно;

  • использовать приобретённые знания и умения в практической деятельности при подготовке к ЕГЭ.


  1. План – конспект урока по теме:


«Метод интервалов для непрерывных функций» (2 часа)


Цели урока:

Обучающие:

  • обобщить ранее изученный материал о решении неравенств методом
    интервалов; возможность применения метода интервалов для
    решения неравенств различного типа;

  • выработка умений и навыков в решении неравенств различного типа
    методом интервалов;

  • решение трансцендентных неравенств, с использованием метода рационализации.

Развивающие:

  • повысить интерес учащихся к нестандартным задачам, сформировать у них
    положительный мотив учения;

  • развитие у учащихся логического мышления в процессе поиска рациональных методов и алгоритмов решения;

Воспитательные:

  • формирование нравственных качеств, аккуратности, дисциплинированности, чувства собственного достоинства, ответственного отношения к достижению цели;

  • развитие культуры научных и учебных взаимоотношений между учениками и между учениками и учителем; воспитание навыков совместного решения задач. 



Тип урока: урок обобщения и систематизации знаний.

План урока:

  1. Организационный момент.

  2. Повторение и актуализация опорных знаний.

  3. Решение неравенств методом интервалов.

  4. Подведение итогов. Задание на дом.

Ход урока:


1. Организационный момент.


2. Повторение и актуализация опорных знаний.


Обобщенный метод интервалов.

  1. Применимость метода интервалов не ограничивается решением рациональных неравенств.

  2. Применяя метод интервалов к решению иррациональных, трансцендентных, комбинированных неравенств, говорим об обобщенном методе интервалов.

Алгоритм обобщенного метода интервалов:

  1. Привести неравенство к виду . Рассмотреть функцию .

  2. Найти область определения функции .

  3. Найти нули функции , решив уравнение

  4. Изобразить на числовой прямой область определения и нули функции.

  5. Определить знаки функции на промежутках, входящих в область определения функции.

  6. Записать ответ, включив в него промежутки в соответствии со знаком неравенства (не забыть включить в ответ изолированные точки).

Метод рационализации.

  • Метод рационализации заключается в замене сложного выражения F(x) на более простое выражение G(x) (в конечном счете, рациональное), при которой неравенство равносильно неравенству в области определения выражения F(x) (символзаменяет один из знаков неравенств: >, ).

  • Выделим некоторые выражения F и соответствующие им рационализирующие выражения G.



Выражение F(x)

Выражение G(x)

loghf - loghg

(h – 1)(f – g)

logfh - loggh

(f – 1)(g – 1)(h – 1)(g – f)

hf - hg

(h – 1)(f – g)

fh - gh

(f – g)h

| f | - | g |

(f – g)(f + g)

loghf · logpg

(f – 1)(g – 1)(h – 1)(p – 1)

f- g



3. Решение неравенств методом интервалов

Каждое задание решает группа учащихся. Затем один из группы записывает решение на доске и поясняет его.



1). Решить неравенство

Используем метод интервалов для решения данного неравенства

  1. Рассмотрим функцию

  2. Найдем область определения функции

  3. Найдем нули функции:

  4. Определим знаки функции на каждом из промежутков



Следовательно, множеством решений исходного неравенства является объединение промежутков

Ответ:

2). Решить неравенство

Используем метод интервалов для решения данного неравенства

  1. Рассмотрим функцию

  2. Найдем область определения функции

  3. Найдем нули функции: ,

  4. Определим знаки функции на каждом из промежутков

Следовательно, множеством решений исходного неравенства является объединение промежутков

Ответ:

3). Решить неравенство

Заменим данное неравенство равносильной системой, используя метод рационализации:



Окончательно получаем,что решением являются все х такие, что

Ответ:

4). Решить неравенство

Воспользуемся методом интервалов:

  1. Рассмотрим функцию

  2. Найдем область определения функции

  1. Найдем нули функции:

На промежутке лежат числа:

  1. Определим знаки функции на каждом из промежутков



Множеством решений исходного неравенства является объединение промежутков

Ответ:

5). Решить неравенство

Используем метод интервалов для решения данного неравенства

  1. Рассмотрим функцию

  2. Найдем область определения функции

  3. Найдем нули функции:

  1. Определим знаки функции на каждом из промежутков

Множеством решений исходного неравенства является объединение промежутков

Ответ:

6). Решить неравенство

Используем метод интервалов для решения данного неравенства



  1. Рассмотрим функцию

  2. Найдем область определения функции

  3. Найдем нули функции:

  1. Определим знаки функции на промежутках:



Следовательно, множеством решений исходного неравенства является объединение промежутков

Ответ:

7). Решить неравенство

Используем метод интервалов для решения данного неравенства

  1. Рассмотрим функцию

  2. Найдем область определения функции

  3. Найдем нули функции:

  4. Определим знаки функции на промежутках:

, следовательно, множеством решений исходного неравенства является объединение промежутков

Ответ:

  1. Подведение итогов. Задание на дом



Выводы, оценки.

  1. Решить неравенства:

а) , б)

в) г)

  1. Дополнительно (на оценку):

а) б)

  1. Проверочная работа


Решить неравенства:

  1. 2.



  1. 4.



5. 6.

Оценка ставится за любые «пять» верно выполненных заданий.







Список использованной литературы

  1. Дорофеев Г. В. Обобщение метода интервалов. – Математика в школе, 1969, №3.

  2. Математика. Алгебра. Начала математического анализа. Профильный уровень: учебник для 10 класса. М. И. Шабунин, А. А. Прокофьев. – М.: БИНОМ. Лаборатория знаний. 2007.

  3. Панферов В. С., Сергеев И. Н. ЕГЭ – 2010. Математика. Задача С3, под редакцией А. Л. Семенова и И. В. Ященко. – М.: МЦНМО, 2010.

  4. Садовничий Ю. В. ЕГЭ. Практикум по математике: Решение уравнений и неравенств. Преобразование алгебраических выражений. – М.: Издательство «Экзамен», 2012.

















Здесь представлен конспект к уроку на тему «Организация повторения по алгебре в 11 профильном классе для подготовки к решению заданий С3 в ЕГЭ», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра (11 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Решение показательных уравнений и неравенств в 11 профильном классе

Решение показательных уравнений и неравенств в 11 профильном классе

Муниципальное бюджетное общеобразовательное учреждение лицей № 6. городского округа Тольятти. «Решение показательных уравнений и неравенств ...
Итоговое повторение. Решение заданий по теме « Уравнения

Итоговое повторение. Решение заданий по теме « Уравнения

Урок по теме. « Итоговое повторение. Решение заданий по теме « Уравнения»». Учитель :. Петрученя Н. В.,. учитель математики. МБОУ «Засосенская ...
Применение метода подстановки для решения систем уравнений

Применение метода подстановки для решения систем уравнений

Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа города Пионерский». Калининградской области. ...
Использование метода подстановки для решения систем уравнений

Использование метода подстановки для решения систем уравнений

Муниципальное бюджетное общеобразовательное учреждение. «Тимковская основная общеобразовательная школа». Использование . метода . подстановки ...
Применение производной для исследования функций на монотонность и экстремумы

Применение производной для исследования функций на монотонность и экстремумы

Урок алгебры в 10 классе. по теме: «Применение производной для исследования функций. . на монотонность и экстремумы». Тип урока:. . интегрированный. ...
Решение квадратных уравнений по формуле

Решение квадратных уравнений по формуле

" Решение квадратных уравнений по формуле". Тип урока. Урок закрепления знаний. Цели урока. Познавательная:. . - закрепить и систематизировать ...
Решение задач по механике с использованием тригонометрии

Решение задач по механике с использованием тригонометрии

Муниципальное общеобразовательное учреждение. Средняя общеобразовательная школа № 34 города Томска. Конспект интегрированного урока ...
Путешествие по озеру Байкал (умножение многочлена на многочлен)

Путешествие по озеру Байкал (умножение многочлена на многочлен)

Муниципальное бюджетное общеобразовательное учреждение «средняя общеобразовательная школа №5. . . . Тема: «Путешествие по озеру Байкал (умножение ...
Применение производной к исследованию свойств функции и к решению прикладных задач

Применение производной к исследованию свойств функции и к решению прикладных задач

Конспект урока алгебры для учащихся 10 класса. Тема урока:. Применение производной к исследованию свойств функции и к решению прикладных задач. ...
Применение производной для решения задач экономического содержания

Применение производной для решения задач экономического содержания

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа № 31. города Мурманска. конспект урока. «Применение ...
Применение производной для решения задач

Применение производной для решения задач

5. . Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 8». Рузаевского района Республики Мордовия. ...
Составление квадратного трехчлена по его корням

Составление квадратного трехчлена по его корням

Класс. : 8 «Б». Предмет. : Алгебра. Дата. : _______. Урок. № 64. Тема. :. «. Составление квадратного трехчлена по его корням». . . Цели урока. ...
Применение метода интервалов для решения неравенств

Применение метода интервалов для решения неравенств

Применение метода интервалов для решения неравенств. . . 9-й класс. Цель урока:.  рассмотреть применение метода интервалов для решения неравенств ...
Практикум «Решение задач по геометрии

Практикум «Решение задач по геометрии

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа № 29 поселка Мостовского. муниципального образования Мостовский ...
Построение графика квадратичной функции с использованием сдвигов по осям координат

Построение графика квадратичной функции с использованием сдвигов по осям координат

МБОУ Чистопольская СОШ. Урок алгебры в 8 классе. Тема «Построение графика квадратичной функции с использованием сдвигов по осям координат». ...
План урока по теме: Квадратные уравнения

План урока по теме: Квадратные уравнения

План урока по теме : Квадратные уравнения (8 класс). Автор Шаповалова Светлана Эдуардовна. Учитель МБОУ СОШ № 50 им.С.В.Марзоева г.Владикавказ. ...
Нестандартный урок по Математике, ОБЖ: Безопасность жизнидеятельности в задачах

Нестандартный урок по Математике, ОБЖ: Безопасность жизнидеятельности в задачах

Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа с углубленным изучением отдельных предметов №78. ...
Теория вероятностей и комбинаторика в заданиях ЕГЭ

Теория вероятностей и комбинаторика в заданиях ЕГЭ

ШЕВЕЛЕВА НАДЕЖДА. МИХАЙЛОВНА. МОУ «Ягельная СОШ» Надымского района. Ямало-Ненецкого автономного округа. Учитель математики. ...
Вывод формул для вычисления координат вершины параболы

Вывод формул для вычисления координат вершины параболы

Нагаева Светлана Николаевна, учитель математики МАОУ « Лицей №1» города Березники. Проект. урока по алгебре в 9 классе. (гуманитарный профиль). ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:24 июня 2016
Категория:Алгебра
Классы:
Поделись с друзьями:
Скачать конспект