» » » Уравнение множественной регрессии

Презентация на тему Уравнение множественной регрессии


Здесь Вы можете скачать готовую презентацию на тему Уравнение множественной регрессии. Предмет презентации: Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайдов.

Слайды презентации

Слайд 1
Лекция 7 Уравнение множественной регрессии Теорема Гаусса-Маркова Автор: Костюнин Владимир Ильич, доцент кафедры: «Математическое моделирование экономических процессов»
Слайд 2
(7.1) Наилучшая линейная процедура получения оценок параметров уравнения (7.1) и условия, при которых эта процедура дает несмещенные и эффективные оценки, сформулирована в теореме Гаусса-Маркова
Слайд 3
Карл Фридрих Гаусс Время жизни 30.04.1777 - 23.02.1855 Научная сфера – математика, физика, астрономия Андрей Андреевич Марков Время жизни 14.06.1856 - 20.07.1922 Научная сфера - математика
Слайд 4
Постановка задачи: Имеем случайную выборку наблюдений за поведением экономического объекта объемом n Выборка наблюдений за переменными модели (7.1) Первый индекс – номер регрессора Второй индекс – номер наблюдения (7.2) - Система уравнений наблюдений, связывающая наблюдения в выборке (7.2)
Слайд 5
Сформируем вектора и матрицу коэффициентов на основе системы (7.2) Y – вектор выборочных значений эндогенной переменной U – вектор выборочных значений случайного возмущения A - вектор неизвестных параметров модели х – вектор регрессоров X – матрица коэффициентов при неизвестных параметрах
Слайд 6
По данным выборки найти: Ã, Cov(ÃÃ), σ u , σ ( ỹ (z)) Теорема (Гаусса – Маркова) Если матрица Х неколлинеарна и вектор случайных возмущений удовлетворяет следующим требованиям: Математическое ожидание всех случайных возмущений равно нулю Дисперсия случайных возмущений постоянна во всех наблюдениях (условие ГОМОСКЕДАСТИЧНОСТИ ) Случайные возмущения в разных наблюдениях не зависимы Случайные возмущения и регрессоры не зависимы
Слайд 7
Тогда наилучшей линейной процедурой оценки параметров модели (7.1) является: (7.3) которая удовлетворяет методу наименьших квадратов При этом:
Слайд 8
Доказательство Воспользуемся методом наименьших квадратов где (7.4) (7.5) Подставив (7.5) в (7.4) получим (7.6)
Слайд 9
Для получения необходимого условия экстремума дифференцируем (7.6) по вектору параметров Откуда система нормальных уравнений для определения искомых параметров получает вид (7.7) Решение системы (7.7) в матричном виде есть Выражение (7.3) доказано
Слайд 10
Докажем несмещенность оценок (7.3) Несмещенность оценки (7.3) доказана Вычислим ковариационную матрицу оценок (7.3) В результате получено выражение (7.4)
Слайд 11
Пример 1 . Пусть имеем выборку из n наблюдений за случайной величиной Y Найти наилучшие оценки среднего значения и дисперсии этой переменной В терминах теоремы Гаусса –Маркова задача формулируется так: необходимо построить модель типа Y = a 0 +u , при этом имеем:
Слайд 12
Решение 1. Вычисляем ( X T X) -1 2 . Вычисляем ( X T Y) 3 . Вычисляем оценку параметра а 0 4. Находим дисперсию среднего
Слайд 13
Пример 2. Уравнение парной регрессии Построить модель типа Y=a 0 +a 1 x +u, по данным вы- борки наблюдений за переменными Y и x объемом n В схеме Гаусса-Маркова имеем: 1. Вычисляем матрицы ( X T X) и (X T X) -1
Слайд 14
2. Вычисляем X T Y 3. Вычисляем оценку вектора параметров а
Слайд 15
Вычислим дисперсии (ковариационную матрицу) параметров модели Следовательно:
Слайд 16
Расчет дисперсии прогнозирования Прогноз осуществляется в точке Z={1,z} Т
Слайд 17
Процедура «ЛИНЕЙН» в приложении EXCEL Алгоритм использования процедуры: 1. Подготовка таблицы исходных данных 2. Вызов процедуры «ЛИНЕЙН» 3. Ввод исходных данных в процедуру 4. Анализ результата Рассмотрим алгоритм на примере
Слайд 18
Выводы: 1. Теорема Гаусса-Маркова формулирует наилучшую линейную процедуру расчета оценок параметров линейной модели множественной регрессии 2. Линейная процедура соответствует методу наименьших квадратов 3. Предпосылки теоремы обеспечивают получение оценок, обладающих свойствами несмещенности и эффективности 4. При выполнении предпосылок свойства эффективности и несмещенности достигаются при любом законе распределения случайного возмущения

Другие презентации по математике



  • Яндекс.Метрика
  • Рейтинг@Mail.ru