- Логарифмические уравнения

Презентация "Логарифмические уравнения" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26

Презентацию на тему "Логарифмические уравнения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 26 слайд(ов).

Слайды презентации

Логарифмические уравнения Слайд: 1
Слайд 1
МОУ лицей №1 г. Комсомольск –на - Амуре. Учитель математики: О.С. Чупрова 2007 г.
Слайд 2

МОУ лицей №1 г. Комсомольск –на - Амуре

Учитель математики: О.С. Чупрова 2007 г.

1.Уравнения, решаемые по определению. logab=c, ac =b, a>0, a≠1, b>0
Слайд 3

1.Уравнения, решаемые по определению

logab=c, ac =b, a>0, a≠1, b>0

Пример: log3(2-x)=2 ОДЗ: 2-x>0 2-x=32 x
Слайд 4

Пример:

log3(2-x)=2 ОДЗ: 2-x>0 2-x=32 x<2 2-x=9 -x=6 x=-6 Ответ: x=-6

2.Уравнения, решаемые с использованием основных свойств. loga(bc) =loga│b│+loga│c│ loga(b/c)=loga│b│- loga│c│ logabp=ploga│b│
Слайд 5

2.Уравнения, решаемые с использованием основных свойств

loga(bc) =loga│b│+loga│c│ loga(b/c)=loga│b│- loga│c│ logabp=ploga│b│

log2(x+1)+log2(x+2)=1 ОДЗ: x+1>0 x>-1 log2(x+1)(x+2)=1 x+2>0 x>-2 (x+1)(x+2)=21 х>-1 x2+3x=0 x(x+3)=0 x1=0 x2=-3(не уд. ОДЗ) Ответ: x=0
Слайд 6

log2(x+1)+log2(x+2)=1 ОДЗ: x+1>0 x>-1 log2(x+1)(x+2)=1 x+2>0 x>-2 (x+1)(x+2)=21 х>-1 x2+3x=0 x(x+3)=0 x1=0 x2=-3(не уд. ОДЗ) Ответ: x=0

3.Метод потенцирования. f(x)>0 logaf(x)=logag(x) g(x)>0 f(x)=g(x)
Слайд 7

3.Метод потенцирования

f(x)>0 logaf(x)=logag(x) g(x)>0 f(x)=g(x)

lg(x-4)+lg(x-6)=lg8 ОДЗ: x-4>0 x>4 x>6 lg(x-4)(x-6)=lg8 x-6>0 x>6 (x-4)(x-6)=8 x2-10x+16=0 x1=8 x2=2 (не уд. ОДЗ) Ответ: x=8
Слайд 8

lg(x-4)+lg(x-6)=lg8 ОДЗ: x-4>0 x>4 x>6 lg(x-4)(x-6)=lg8 x-6>0 x>6 (x-4)(x-6)=8 x2-10x+16=0 x1=8 x2=2 (не уд. ОДЗ) Ответ: x=8

4.Метод подстановки. а)Уравнения, сводящиеся к квадратным Пример1: lg2x-3lgx+2=0 ОДЗ: x>0 пусть lgx=t, tєR t2-3t+2=0 t1=1 t2=2 если t1=1, то если t2=2, то lgx=1 lgx=2 x=10 x=100 Ответ: x1=10, x2=100
Слайд 9

4.Метод подстановки

а)Уравнения, сводящиеся к квадратным Пример1: lg2x-3lgx+2=0 ОДЗ: x>0 пусть lgx=t, tєR t2-3t+2=0 t1=1 t2=2 если t1=1, то если t2=2, то lgx=1 lgx=2 x=10 x=100 Ответ: x1=10, x2=100

Пример2: lg2(10x)=5-lgx ОДЗ: x>0 (lg10+lgx)2=5-lgx 1+2lgx+lg2x-5+lgx=0 lg2x+3lgx-4=0 пусть lgx=t t2+3t-4=0 t1=1; t2= - 4 если t1=1, то если t2= - 4,то lgx=1 lgx=-4 x=10 x=0,0001 Ответ: x1=10, x2=0,0001
Слайд 10

Пример2: lg2(10x)=5-lgx ОДЗ: x>0 (lg10+lgx)2=5-lgx 1+2lgx+lg2x-5+lgx=0 lg2x+3lgx-4=0 пусть lgx=t t2+3t-4=0 t1=1; t2= - 4 если t1=1, то если t2= - 4,то lgx=1 lgx=-4 x=10 x=0,0001 Ответ: x1=10, x2=0,0001

б)Использование формулы. logab=1/logba
Слайд 11

б)Использование формулы

logab=1/logba

Пример: logx(9x2)log23x=4 ОДЗ: x>0 (logx9+logxx2)log23x=4 x≠1 (2logx3+2)log23x=4 (2/log3x+2)log23x=4 пусть log3x=t (2/t+2)t2=4 2t2+2t-4=0 t1=1; t2=-2 если t1=1, то если t2=-2, то log3x=1; x1=3; log3x=-2. x2=1/9. Ответ: x1=3, x2=1/9
Слайд 12

Пример: logx(9x2)log23x=4 ОДЗ: x>0 (logx9+logxx2)log23x=4 x≠1 (2logx3+2)log23x=4 (2/log3x+2)log23x=4 пусть log3x=t (2/t+2)t2=4 2t2+2t-4=0 t1=1; t2=-2 если t1=1, то если t2=-2, то log3x=1; x1=3; log3x=-2. x2=1/9. Ответ: x1=3, x2=1/9

5.Метод приведения к одному основанию. logab=logсb/logca a>0,b>0, c>0 a≠1, c ≠1
Слайд 13

5.Метод приведения к одному основанию

logab=logсb/logca a>0,b>0, c>0 a≠1, c ≠1

log2x+log4x+log8x=11 ОДЗ:x>0 log2x+log22x+log23x=11 log2x+1/2log2x+1/3log2x=11 11/6log2x=11 log2x=6 x=26 x=64 Ответ: x=64
Слайд 14

log2x+log4x+log8x=11 ОДЗ:x>0 log2x+log22x+log23x=11 log2x+1/2log2x+1/3log2x=11 11/6log2x=11 log2x=6 x=26 x=64 Ответ: x=64

6.Метод логарифмирования. logabр=рlogab b>0; a>0; a≠1
Слайд 15

6.Метод логарифмирования

logabр=рlogab b>0; a>0; a≠1

x (lgx+5)/3 =105+lgx ОДЗ:x>0 прологарифмируем уравнение по основанию 10 lgx(lgx+5)/3=lg105+lgx ((lgx+5)/3)lgx=(5+lgx)lg10 1/3(lgx+5)lgx=5+lgx|*3 (lgx+5)lgx=15+3lgx lg2x+5lgx=15+3lgx lg2x+2lgx-15=0 пусть lgx=t t2+2t-15=0 t1=-5; t2=3 если t1=-5, то lgx=-5 если t2=3, то lgx=3 x1=0,00001 x2=1000 Отве
Слайд 16

x (lgx+5)/3 =105+lgx ОДЗ:x>0 прологарифмируем уравнение по основанию 10 lgx(lgx+5)/3=lg105+lgx ((lgx+5)/3)lgx=(5+lgx)lg10 1/3(lgx+5)lgx=5+lgx|*3 (lgx+5)lgx=15+3lgx lg2x+5lgx=15+3lgx lg2x+2lgx-15=0 пусть lgx=t t2+2t-15=0 t1=-5; t2=3 если t1=-5, то lgx=-5 если t2=3, то lgx=3 x1=0,00001 x2=1000 Ответ: x1=0,00001, x2=1000

7.Использование специальной формулы. a logсb = b logсa b>0;b≠1 a>0; a≠1; с>0; с≠1
Слайд 17

7.Использование специальной формулы

a logсb = b logсa b>0;b≠1 a>0; a≠1; с>0; с≠1

3xlog52+2log5x=64 ОДЗ: x>0 3*2log5x+2log5x=64 4*2log5x=64 |:4 2log5x=16 2log5x=24 log5x=4 x=54 x=625 Ответ: x=625
Слайд 18

3xlog52+2log5x=64 ОДЗ: x>0 3*2log5x+2log5x=64 4*2log5x=64 |:4 2log5x=16 2log5x=24 log5x=4 x=54 x=625 Ответ: x=625

8.Использование свойств монотонности функции. Пример: log3(x+1)+log4(5x+6)=3 ОДЗ: x> -1,2 y= log3(x+1) - возрастающая функция y= log4(5x+6)- возрастающая функция 3 - const Сумма двух возрастающих функций равна возрастающей функции. Используем утверждение: если возр. функция равна const или убыв.
Слайд 19

8.Использование свойств монотонности функции

Пример: log3(x+1)+log4(5x+6)=3 ОДЗ: x> -1,2 y= log3(x+1) - возрастающая функция y= log4(5x+6)- возрастающая функция 3 - const Сумма двух возрастающих функций равна возрастающей функции. Используем утверждение: если возр. функция равна const или убыв. функции, тогда уравнение имеет один корень, который находится с помощью метода подбора. Ответ: x=2

9.Использование свойств ограниченности функции. Пример: log2(17-|sin0,5πx|)=√2x+15-x2 1)рассмотрим левую часть т.к. 0≤ |sin0,5πx| ≥ 1 ,то log2(17-|sin0,5πx|) ≥log2(17-1)=log216=4 т.е. 0≤ |sin0,5πx| ≥ 4 при x=1 - достигается равенство 2)рассмотрим правую часть √2x+15-x2= √16-(x+1) ≤ √16=4=16-(x-1)2 √
Слайд 20

9.Использование свойств ограниченности функции

Пример: log2(17-|sin0,5πx|)=√2x+15-x2 1)рассмотрим левую часть т.к. 0≤ |sin0,5πx| ≥ 1 ,то log2(17-|sin0,5πx|) ≥log2(17-1)=log216=4 т.е. 0≤ |sin0,5πx| ≥ 4 при x=1 - достигается равенство 2)рассмотрим правую часть √2x+15-x2= √16-(x+1) ≤ √16=4=16-(x-1)2 √2x+15-x2≤4 при x=1 – достигается равенство Ответ: x=1

10.Однородные уравнения II степени. ax2+bxy+cy2=0|:y2≠0 a(x/y)2+b(x/y)+c=0 at2+bt+c=0
Слайд 21

10.Однородные уравнения II степени

ax2+bxy+cy2=0|:y2≠0 a(x/y)2+b(x/y)+c=0 at2+bt+c=0

3log22(x+1)-4log2(2x+1)log2(x+1)+log22(2x+1)=0 Делим на log22(2x+1) ОДЗ: x>1/2 3(log2(x+1)/log2(2x+1))2-4log2(2x+1)log2(x+1)/log22(2x+1)+1=0 t 3t2-4t+1=0 t1=1 t2=1/3 если t1=1 то, если t2=1/3 то, log2(x+1)/log2(2x+1)=1 log2(x+1)/log2(2x+1)=1/3 log2(x+1)=log2(2x+1) 3log2(x+1)=log2(2x+1) x+1=2x+1 l
Слайд 22

3log22(x+1)-4log2(2x+1)log2(x+1)+log22(2x+1)=0 Делим на log22(2x+1) ОДЗ: x>1/2 3(log2(x+1)/log2(2x+1))2-4log2(2x+1)log2(x+1)/log22(2x+1)+1=0 t 3t2-4t+1=0 t1=1 t2=1/3 если t1=1 то, если t2=1/3 то, log2(x+1)/log2(2x+1)=1 log2(x+1)/log2(2x+1)=1/3 log2(x+1)=log2(2x+1) 3log2(x+1)=log2(2x+1) x+1=2x+1 log2(x+1)3=2x+1 x=0 x(x2+3x+1)=0 x1=0 x2=(-3+√5)/2 x3=(-3-√5)/2 Ответ: x1=0, x2= =(-3+√5)/2 не уд.

11.Уравнения, содержащие неизвестное в основании и показателе степени. Пример: x√x=√xx ОДЗ: x>0, logx x√x =logx √xx x≠ 1 logx xx0,5 =logx (x0,5)x √xlogx x=0,5logxx √x=0,5x √x(1-0,5√x)=0 √x=0 (не уд.ОДЗ) (1-0,5√x)=0 √x=2 x=4 Ответ: x=4
Слайд 23

11.Уравнения, содержащие неизвестное в основании и показателе степени

Пример: x√x=√xx ОДЗ: x>0, logx x√x =logx √xx x≠ 1 logx xx0,5 =logx (x0,5)x √xlogx x=0,5logxx √x=0,5x √x(1-0,5√x)=0 √x=0 (не уд.ОДЗ) (1-0,5√x)=0 √x=2 x=4 Ответ: x=4

12.Функционально - графический метод. (х – 1) = log2x Строим графики функций у = (х – 1) и у = log2x. Ответ: х = 1, х=2. 1 2 х у 0
Слайд 24

12.Функционально - графический метод

(х – 1) = log2x Строим графики функций у = (х – 1) и у = log2x. Ответ: х = 1, х=2.

1 2 х у 0

Решить самостоятельно. lq(х²-2х)=lg30-1; lg(x²+2x-3)=lg(6X-2); log3X*lоg2х =4 log32; log3X+log9X+log27X=1/12; log5(X-l0)-log5(X+2)=-1; 3+ 2logX+13=2log3(X+1).
Слайд 25

Решить самостоятельно

lq(х²-2х)=lg30-1; lg(x²+2x-3)=lg(6X-2); log3X*lоg2х =4 log32; log3X+log9X+log27X=1/12; log5(X-l0)-log5(X+2)=-1; 3+ 2logX+13=2log3(X+1).

Литература: Математика. Тренировочные тематические задания ЕГЭ повышенной сложности. Сост. Г.И. Ковалева и др. «Учитель». Волгоград. 2005. Математика. ЕГЭ. Эффективная подготовка. Л.Д. Лаппо, М.А. Попов. «Экзамен». Москва. 2007.
Слайд 26

Литература:

Математика. Тренировочные тематические задания ЕГЭ повышенной сложности. Сост. Г.И. Ковалева и др. «Учитель». Волгоград. 2005. Математика. ЕГЭ. Эффективная подготовка. Л.Д. Лаппо, М.А. Попов. «Экзамен». Москва. 2007.

Список похожих презентаций

Логарифмические уравнения

Логарифмические уравнения

Математик Джон Бригг, прославившись открытиями в области логарифмов писал:. «Своими новыми и удивительными … уравнениями Непер заставил меня усиленно ...
Логарифмические уравнения и их системы

Логарифмические уравнения и их системы

Функция y = loga х (где а > 0, а =1) называется логарифмческой. График логарифмической функции logaх можно построить, воспользовавшись тем, что функция ...
Урок Логарифмические уравнения

Урок Логарифмические уравнения

logax = b x > 0 a > 0 a ≠ 1. НАЙДИТЕ ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ УРАВНЕНИЙ. 1.logx5 = 1 2.logx(x2-1) = 0 3.log5(2x+1) = log5(x+2). ОПРЕДЕЛИТЕ МЕТОДЫ ...
Логарифмические уравнения

Логарифмические уравнения

Определение логарифма Об истории развития логарифмов Основные свойства логарифмов (Формулы преобразования логарифмов) О монотонности логарифмической ...
Логарифмические уравнения и неравенства

Логарифмические уравнения и неравенства

Цель урока. Повторение свойств логарифмов и логарифмической функции. Отработка навыков при решении логарифмических уравнений и неравенств. Определение ...
Многочлены и уравнения высших степеней

Многочлены и уравнения высших степеней

Пояснительная записка. За минувший век в математике произошли грандиозные изменения, она (впрочем, как и все другие науки) шагнула необыкновенно далеко ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Сегодня на уроке мы будем:. записывать квадратные уравнения; вспоминать формулы нахождения корней квадратного уравнения; решать квадратные уравнения ...
Тригонометрические уравнения

Тригонометрические уравнения

Тригонометрические уравнения. Уравнение представляет собой наиболее серьёзную и важную вещь в математике. О.Лодж. «Дороги не те знания, которые откладываются ...
Решение уравнений в целых числах. Диофантовы уравнения

Решение уравнений в целых числах. Диофантовы уравнения

Диофантовы уравнения. Алгебраические уравнения с целыми коэффициентами, решаемые во множестве целых чисел, вошли в историю математики как диофантовы. ...
Простейшие тригонометрические уравнения

Простейшие тригонометрические уравнения

История развития тригонометрии. . . . . . . . . . . Устная работа. Ответьте на вопросы:. Может ли косинус быть равным: 0,75; 5/3; -0,35; π/3; 3/π; ...
Показательные уравнения и способы их решения

Показательные уравнения и способы их решения

Определение: Показательные уравнения – уравнения, в которых переменная входит только в показатели степеней при постоянных основаниях. Например,. Основные ...
Показательные уравнения

Показательные уравнения

Показательные. Цели урока: 1. ввести понятие показательных уравнений; 2. формировать умение решать показательные уравнения основными методами: функционально-графическим, ...
Диофантовы уравнения

Диофантовы уравнения

Цели и задачи. Определение диофантова уравнения Биография Диофанта Диофантовые уравнения первой степени Диофантовые уравнения высших степеней Проект ...
Диофантовы уравнения

Диофантовы уравнения

СКОЛЬКО РЕШЕНИЙ ИМЕЕТ ДАННОЕ УРАВНЕНИЕ? (2х+у)(5х+3у)=7. 3) Не имеет решений. 4) Бесконечно много решений. Следующее задание. (3х+7у)(х-у)=13 1) 2 ...
Диофантовы уравнения

Диофантовы уравнения

Диофантовы уравнения Глобально не изучаются в школьной программе, а присутствуют на экзамене! Проблема подтолкнувшая на создание работы:. обусловлена ...
Диофантовы уравнения

Диофантовы уравнения

Цели учебно – исследовательской работы: изучить способы решения диофантовых уравнений; повысить уровень математической культуры, прививая навыки самостоятельной ...
Графическое решение линейного уравнения с двумя переменными

Графическое решение линейного уравнения с двумя переменными

Цель урока:. проверить прочность знаний, умений и навыков, учащихся по данной теме, обеспечить закрепление и обобщение изученного материала; развивать ...
Графики линейного уравнения с двумя переменными

Графики линейного уравнения с двумя переменными

Цель урока:. ввести понятие графика уравнения с двумя переменными; повторить построение графика линейной функции по двум точкам; закрепить навыки ...
Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения

Уравнение первого порядка. Функциональное уравнение F(x,y,y) = 0 или y= f(x,y), связывающее между собой независимую переменную, искомую функцию ...
Определение квадратного уравнения. Неполные квадратные уравнения

Определение квадратного уравнения. Неполные квадратные уравнения

ax+b=0. 1) (2х-3)2-2х(4+2х)=49, 2) y2+80=81, 3) -z+4=47, 4) 2x2+3х+1=0, 5) 4k/3+4=k/2+1, 6) 12s-4s2=0, 7) 10+p2-4p=2(5-3p), 8) 6(t-1)=9,4-1,7t, 9) ...

Конспекты

Логарифмические уравнения решаемые с помощью квадратных уравнений

Логарифмические уравнения решаемые с помощью квадратных уравнений

Министерство образования и науки Республики Казахстан. Атбасарский районный отдел образования. Акмолинской области. Открытый урок по алгебре ...
Логарифмы. Логарифмические уравнения

Логарифмы. Логарифмические уравнения

. Конспект урока. . по алгебре и началам анализа. . по теме: «Логарифмы. . . Логарифмические уравнения». в 11 классе. Учитель: Щёкина ...
Логарифмические уравнения и неравенства

Логарифмические уравнения и неравенства

Тема. : «Логарифмические уравнения и неравенства». Цели: Проверить теоретические и практические знания по теме; отработать навыки решения логарифмических ...
Логарифмические уравнения и способы их решения

Логарифмические уравнения и способы их решения

. План-конспект урока по теме:. «Логарифмические уравнения и способы их решения» (10 кл.). Автор:. Филиппова Е.М.,. учитель МБОУ СОШ №1. ...
Логарифмические уравнения

Логарифмические уравнения

Тема:. Урок систематизации и обобщения знаний по теме «Логарифмические уравнения». Класс:. 11. Учитель:. . Гомбоева Самажаб Бадмаевна, учитель ...
Логарифмические уравнения

Логарифмические уравнения

План урока алгебры в 11 классе. Тема урока: Логарифмические уравнения. Цели урока. :. . - образовательные. : систематизировать знания по ...
Логарифмические уравнения

Логарифмические уравнения

Логарифмические уравнения. 11 класс. Алгебра и начала анализа. А.Г.Мордкович. Цели урока:. Обучающие:. повторить методы решения логарифмических ...
Свойства логарифмов. Логарифмические и показательные уравнения и неравенства

Свойства логарифмов. Логарифмические и показательные уравнения и неравенства

Муниципальное бюджетное образовательное учреждение. . «Средняя общеобразовательная школа № 7» им. О.Н. Мамченкова. . г. Елизово, Камчатский край. ...
Повторение: логарифмы, логарифмические уравнения

Повторение: логарифмы, логарифмические уравнения

Преподаватель: Гаученова Валентина Петровна. Забайкальский край. Государственное профессиональное образовательное учреждение «Чернышевское многопрофильное ...
Показательные уравнения

Показательные уравнения

ТЕМА «Показательные уравнения». Цели:. 1.Познакомиться с разными видами показательных уравнений, научиться различать разные виды показательных уравнений, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:23 мая 2019
Категория:Математика
Автор презентации:Учитель математики: О.С. Чупрова
Содержит:26 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации